In all of the simple algorithms for path tracing using lots of monte carlo samples the tracing the path part of the algorithm randomly chooses between returning with the emitted value for the current surface and continuing by tracing another ray from that surface's hemisphere (for example in the slides here). Like so:
TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p’
Select with probability (say) 50%:
Emitted:
return 2 * (Le_red, Le_green, Le_blue) // 2 = 1/(50%)
Reflected:
generate ray in random direction d’
return 2 * fr(d ->d’) * (n dot d’) * TracePath(p’, d’)
Is this just a way of using russian roulette to terminate a path while remaining unbiased? Surely it would make more sense to count the emissive and reflective properties for all ray paths together and use russian roulette just to decide whether to continue tracing or not.
And here's a follow up question: why do some of these algorithms I'm seeing (like in the book 'Physically Based Rendering Techniques') only compute emission once, instead of taking in to account all the emissive properties on an object? The rendering equation is basically
L_o = L_e + integral of (light exiting other surfaces in to the hemisphere of this surface)
which seems like it counts the emissive properties in both this L_o and the integral of all the other L_o's, so the algorithms should follow.