1

I wrote an animation with Mathematica 8.04 and saved it as myfile.cdf. It plays nicely on my computer which has mathematica installed. If I play this on a different computer with only Mathematica cdf player installed, it only plays a fraction of the images. There is a command like Show[Graphical object1,Graphical object2, ... ].

I get an error Message from the CDF Player saying

"Show Gcomb: Could not combine Graphics objects in Show[..."

Does anybody know a solution?


EDIT: requested code

\[Phi] = -\[Pi]/6;
A2 = 1.5;
Kreis = ParametricPlot[{2.5 Cos[ t], 2.5 Sin[t]}, {t, 0, 
    2 \[Pi]},(*AspectRatio->1,*)
   PlotStyle -> {{Thickness[.005], RGBColor[1, 1, 1]}}, 
   AxesLabel -> {"Re", "Im"}, Ticks -> {{-3, 3}, {-3, 3}}, 
   ImageSize -> {338, 338}];

   sinus1 = Plot[Sin[x], {x, 0, 2 \[Pi]} , 
   PlotStyle -> {{Thickness[.005], RGBColor[1, 0, 0]}}, 
   Ticks -> {{0, \[Pi]/2, \[Pi], 3 \[Pi]/2, 2 \[Pi](*,5\[Pi]/2,3\[Pi],
      7\[Pi]/2,4\[Pi]*)}, {-3, -1, 1, 3}}, AxesLabel -> {"t", ""}, 
   PlotRange -> {{0, 2 \[Pi]}, {-2.5, 2.5}}, ImageSize -> {525, 525}];
sinus2 = Plot[A2 Sin[x - \[Phi]], {x, 0, 2 \[Pi]}, 
   PlotStyle -> {{Thickness[.005], RGBColor[0, 1, 0]}} ];
sinus3 = Plot[A2 Sin[x - \[Phi]] + Sin[x], {x, 0, 2 \[Pi]}, 
   PlotStyle -> {{Thickness[.005], RGBColor[0, 0, 1]}} , 
   PlotRange -> {{0, 2 \[Pi]}, {-2.5, 2.5}}];


Kreisbewegung = 
 Animate[(*\[Phi]3=ArcTan[(Sin[t]+A2 Sin[t-\[Phi]])/(Cos[t]+A2 Cos[
  t-\[Phi]])];
  A3=Sqrt[(Cos[t]+A2 Cos[t-\[Phi]])^2+(Sin[t]+A2 Sin[t-\[Phi]])^2];*)


  GraphicsRow[{Show [Kreis,(*ParametricPlot[{Cos[ s],Sin[s]},{s,0,t},
     PlotStyle->{{Thickness[.005],RGBColor[1,0,0]}}],
     ParametricPlot[{A2 Cos[ s],A2 Sin[s]},{s,0,t-\[Phi]},
     PlotStyle->{{Thickness[.005],RGBColor[0,1,0]}}],
     ParametricPlot[{ A3 Cos[s],A3 Sin[s]},{s,0,\[Phi]3},
     PlotStyle->{{Thickness[.005],RGBColor[0,0,1]}}],*)

     Graphics[{
        Red, Arrowheads[.05], Arrow[{{0, 0}, {Cos[t], Sin[t]}}],
       { Thickness[.0015], Red, Line[{{Cos[t], 0}, {Cos[t], Sin[t]}}]},


        Green, Arrowheads[.05], 
       Arrow[{{0, 0}, {A2 Cos[t - \[Phi]], A2 Sin[t - \[Phi]]}}],
        {Thickness[.0015], Green, 
        Line[{{A2 Cos[t - \[Phi]], 0}, {A2 Cos[t - \[Phi]], 
           A2 Sin[t - \[Phi]]}}]},
       Blue, Arrowheads[.05], 
       Arrow[{{0, 0}, {Cos[t] + A2 Cos[t - \[Phi]], 
          Sin[t] + A2 Sin[t - \[Phi]]}}],
        {Thickness[.0015],
        Blue, 
        Line[{{Cos[t] + A2 Cos[t - \[Phi]], 
           0}, {Cos[t] + A2 Cos[t - \[Phi]], 
           Sin[t] + 
            A2 Sin[t - \[Phi]]}}]},                                   


                  Axes -> True, AxesOrigin -> {0, 0}, Ticks -> None ,
           PlotRange -> {{-3, 3}, {-3, 3}}, AxesLabel -> {y, x}, 
       AspectRatio -> 1/1}]],



    Show[sinus1, sinus2, sinus3, 
     Graphics[{Thickness[.0015], Green, 
       Line[{{t, 0}, {t, A2 Sin[t - \[Phi]]}}],

                        RGBColor[0, 1, 0], PointSize[0.013], 
       Point[{t, A2 Sin[ t - \[Phi]]}],


                         Thickness[.0015], Red, 
       Line[{{t, 0}, {t, Sin[t]}}], 

                         RGBColor[1, 0, 0], PointSize[0.013], 
       Point[{t, Sin[t]}],


                         Thickness[.0015], Blue, 
       Line[{{t, 0}, {t, Sin[t] + A2 Sin[ t - \[Phi]]}}], 

                         RGBColor[0, 0, 1], PointSize[0.013], 
       Point[{t, Sin[t] + A2 Sin[ t - \[Phi]]}]


                     } ] 
                     ]


    }], {t, 0, 2 \[Pi]}, AnimationRate -> 0.01]
Sjoerd C. de Vries
  • 16,122
  • 3
  • 42
  • 94
  • Did your animation run completely on its own? Meaning: save your animation, quit Mathematica and reopen the notebook. Now, your animation should work without evaluating any line of code. If this works, follow ruebenkos advise. Otherwise, ensure that your dynamic content is completely selfcontained. – halirutan Dec 06 '11 at 11:06
  • @hans cycon I added your code to the question assuming that you and the original poster are the same. Your code was deleted by a moderator because it was given as an answer (whereas it wasn't one). – Sjoerd C. de Vries Dec 09 '11 at 21:43
  • @ruebenko The code is now there – Sjoerd C. de Vries Dec 09 '11 at 21:45

1 Answers1

1

Here is a version that should work. As mentioned in the comments your CDF code needs to work without evaluating a line of code.

\[Phi] = -\[Pi]/6;
A2 = 1.5;
Kreis = ParametricPlot[{2.5 Cos[t], 2.5 Sin[t]}, {t, 0, 
    2 \[Pi]},(*AspectRatio->1,*)
   PlotStyle -> {{Thickness[.005], RGBColor[1, 1, 1]}}, 
   AxesLabel -> {"Re", "Im"}, Ticks -> {{-3, 3}, {-3, 3}}, 
   ImageSize -> {338, 338}];
sinus1 = Plot[Sin[x], {x, 0, 2 \[Pi]}, 
  PlotStyle -> {{Thickness[.005], RGBColor[1, 0, 0]}}, 
  Ticks -> {{0, \[Pi]/2, \[Pi], 3 \[Pi]/2, 2 \[Pi](*,5\[Pi]/2,3\[Pi],
     7\[Pi]/2,4\[Pi]*)}, {-3, -1, 1, 3}}, AxesLabel -> {"t", ""}, 
  PlotRange -> {{0, 2 \[Pi]}, {-2.5, 2.5}}, 
  ImageSize -> {525, 525}]; sinus2 = 
 Plot[A2 Sin[x - \[Phi]], {x, 0, 2 \[Pi]}, 
  PlotStyle -> {{Thickness[.005], RGBColor[0, 1, 0]}}];
sinus3 = Plot[A2 Sin[x - \[Phi]] + Sin[x], {x, 0, 2 \[Pi]}, 
   PlotStyle -> {{Thickness[.005], RGBColor[0, 0, 1]}}, 
   PlotRange -> {{0, 2 \[Pi]}, {-2.5, 2.5}}];

Manipulate[
 (*\[Phi]3=ArcTan[(Sin[t]+A2 Sin[t-\[Phi]])/(Cos[t]+A2 Cos[t-\[Phi]])];
 A3=Sqrt[(Cos[t]+A2 Cos[t-\[Phi]])^2+(Sin[t]+A2 Sin[t-\[Phi]])^2];*)
 GraphicsRow[{Show[Kreis,(*ParametricPlot[{Cos[s],Sin[s]},{s,0,t},
    PlotStyle->{{Thickness[.005],RGBColor[1,0,0]}}],
    ParametricPlot[{A2 Cos[s],A2 Sin[s]},{s,0,t-\[Phi]},
    PlotStyle->{{Thickness[.005],RGBColor[0,1,0]}}],
    ParametricPlot[{A3 Cos[s],A3 Sin[s]},{s,0,\[Phi]3},
    PlotStyle->{{Thickness[.005],RGBColor[0,0,1]}}],*)
    Graphics[{Red, Arrowheads[.05], 
      Arrow[{{0, 0}, {Cos[t], Sin[t]}}], {Thickness[.0015], Red, 
       Line[{{Cos[t], 0}, {Cos[t], Sin[t]}}]}, Green, Arrowheads[.05],
       Arrow[{{0, 0}, {A2 Cos[t - \[Phi]], 
         A2 Sin[t - \[Phi]]}}], {Thickness[.0015], Green, 
       Line[{{A2 Cos[t - \[Phi]], 0}, {A2 Cos[t - \[Phi]], 
          A2 Sin[t - \[Phi]]}}]}, Blue, Arrowheads[.05], 
      Arrow[{{0, 0}, {Cos[t] + A2 Cos[t - \[Phi]], 
         Sin[t] + A2 Sin[t - \[Phi]]}}], {Thickness[.0015], Blue, 
       Line[{{Cos[t] + A2 Cos[t - \[Phi]], 
          0}, {Cos[t] + A2 Cos[t - \[Phi]], 
          Sin[t] + A2 Sin[t - \[Phi]]}}]}, Axes -> True, 
      AxesOrigin -> {0, 0}, Ticks -> None, 
      PlotRange -> {{-3, 3}, {-3, 3}}, AxesLabel -> {y, x}, 
      AspectRatio -> 1/1}]], 
   Show[sinus1, sinus2, sinus3, 
    Graphics[{Thickness[.0015], Green, 
      Line[{{t, 0}, {t, A2 Sin[t - \[Phi]]}}], RGBColor[0, 1, 0], 
      PointSize[0.013], Point[{t, A2 Sin[t - \[Phi]]}], 
      Thickness[.0015], Red, Line[{{t, 0}, {t, Sin[t]}}], 
      RGBColor[1, 0, 0], PointSize[0.013], Point[{t, Sin[t]}], 
      Thickness[.0015], Blue, 
      Line[{{t, 0}, {t, Sin[t] + A2 Sin[t - \[Phi]]}}], 
      RGBColor[0, 0, 1], PointSize[0.013], 
      Point[{t, Sin[t] + A2 Sin[t - \[Phi]]}]}]]}], {t, 0, 2 \[Pi]}, 
 SaveDefinitions -> True]

Mathematica graphics

Sjoerd C. de Vries
  • 16,122
  • 3
  • 42
  • 94