My understanding is that 1-D arrays in numpy can be interpreted as either a column-oriented vector or a row-oriented vector. For instance, a 1-D array with shape (8,)
can be viewed as a 2-D array of shape (1,8)
or shape (8,1)
depending on context.
The problem I'm having is that the functions I write to manipulate arrays tend to generalize well in the 2-D case to handle both vectors and matrices, but not so well in the 1-D case.
As such, my functions end up doing something like this:
if arr.ndim == 1:
# Do it this way
else:
# Do it that way
Or even this:
# Reshape the 1-D array to a 2-D array
if arr.ndim == 1:
arr = arr.reshape((1, arr.shape[0]))
# ... Do it the 2-D way ...
That is, I find I can generalize code to handle 2-D cases (r,1)
, (1,c)
, (r,c)
, but not the 1-D cases without branching or reshaping.
It gets even uglier when the function operates on multiple arrays as I would check and convert each argument.
So my question is: am I missing some better idiom? Is the pattern I've described above common to numpy code?
Also, as a related matter of API design principles, if the caller passes a 1-D array to some function that returns a new array, and the return value is also a vector, is it common practice to reshape a 2-D vector (r,1)
or (1,c)
back to a 1-D array or simply document that the function returns a 2-D array regardless?
Thanks