Recently I watched a lot of Stanford's hilarious Open Classroom's video lectures. Particularly the part about unsupervised Machine Learning got my attention. Unfortunately it stops were it might get even more interesting.
Basically I am looking to classify discrete matrices by an unsupervised algorithm. Those matrices just contain discrete values of the same range. Let's say I have 1000s of 20x15 matrices that with values ranging from 1-3. I just started to read through the literature and I feel that image classification is way more complex (color histograms) and that my case is rather a simplification of what is done there.
I also looked at the Machine Learning and Cluster Cran Task Views but do not know where to start with a practical example.
So my question is: which package / algorithm would be a good pick to start playing around and working on the problem in R?
EDIT: I realized that I might have been to imprecise: My matrix contains discrete choice data – so mean clustering might(!) not be the right idea. I do understand with what you said about vectors and observation but I am hoping for some function that accepts matrices or data.frames, because I have several observations over time.
EDIT2: I realize that a package / function, introduction that focuses on unsupervised classification of categorical data is what would help me the most right now.