I am attempting to solve the linear biharmonic equation in mathematica using DSolve. I think this issue is not just limited to the biharmonic equation but MATHEMATICA just spits out the equation when I attempt to solve it.
I've tried solving other partial differential equations and there was no trouble.
The biharmonic equation is just:
Laplacian^2[f]=0
Here is my equation:
DSolve[
D[f[x, y], {x, 4}] + 2 D[D[f[x, y], {x, 2}, {y, 2}]] +
D[f[x, y], {y, 4}] == 0,
f,
{x, y}]
The solution is spit out as
DSolve[(f^(0,4))[x,y]+2 (f^(2,2))[x,y]+(f^(4,0))[x,y]==0,f,{x,y}]
That is obviously not the solution. What gives? What am I missing? I've solved other PDEs without boundary conditions.