I used AI to convert a math formula into an example code to test how facial features could be converted to genetic traits and output as a family tree of genes. It output the following that can run correctly due to errors: "`
import numpy as np
from scipy.spatial import cKDTree
from scipy.interpolate import griddata
from scipy.optimize import minimize
import matplotlib.pyplot as plt
# 1. Represent phenotype as function u(x,y)
# Use (x,y) coordinates of 3D face scan
x = [1, 2, 4, 5, 7, 8]
y = [3, 1, 7, 6, 9, 4]
u = [0.1, 0.3, 0.5, 0.4, 0.2, 0.7]
# 2. Detect key points by finding local minima/maxima
tree = cKDTree(np.c_[x, y])
query_point = np.array([[0, 10], [5, 5]]) # Query points as a 2D array
keypts_indices = tree.query(query_point, k=3)[1]
print("Indices of Key Points:", keypts_indices)
# 3. Encode genotype as vector
v1, v2 = 0.7, 1.5
# 4. Relate genotype and phenotype through PDE
def laplacian(u):
du_dx = np.gradient(u, axis=0)
du_dy = np.gradient(u, axis=1)
d2u_dx2 = np.gradient(du_dx, axis=0)[0]
d2u_dy2 = np.gradient(du_dy, axis=1)[0]
return d2u_dx2 + d2u_dy2
def phenotype(v1, v2, x, y, u):
u_2d = u.reshape(grid_x.shape) # Reshape u to match the grid dimensions
return (v1 * np.array(x) + v2 * np.array(y)) * laplacian(u_2d)
# 5. Solve PDE to predict u(x,y) from genotype
grid_x, grid_y = np.mgrid[0:10:100j, 0:10:100j]
u_pred = griddata((x, y), u, (grid_x, grid_y), method='cubic')
# 6. Optimize v1, v2 to fit observed u(x,y)
def loss_function(params):
v1, v2 = params
predicted_u = phenotype(v1, v2, x, y, u_pred)
loss = np.sum((u - predicted_u)**2)
return loss
initial_guess = [0.5, 1.0] # Initial guess for v1 and v2
optimized_params = minimize(loss_function, initial_guess, method='L-BFGS-B').x
optimal_v1, optimal_v2 = optimized_params
print("Optimized v1:", optimal_v1)
print("Optimized v2:", optimal_v2)
# 7. Validate model, visualize results
u_optimal = phenotype(optimal_v1, optimal_v2, grid_x, grid_y, u_pred)
plt.figure(figsize=(12, 5))
# Original phenotype
plt.subplot(1, 2, 1)
plt.scatter(x, y, c=u, marker='o', cmap='viridis')
plt.colorbar(label='Phenotype u')
plt.title('Observed Phenotype')
# Predicted phenotype after optimization
plt.subplot(1, 2, 2)
plt.imshow(u_optimal.T, extent=(0, 10, 0, 10), origin='lower', cmap='viridis',
vmin=min(u), vmax=max(u), aspect='auto', interpolation='nearest')
plt.colorbar(label='Phenotype u')
plt.title('Predicted Phenotype after Optimization')
plt.tight_layout()
plt.show()`
The errors were as follows: "--->
47 optimized_params = minimize(loss_function, initial_guess, method='L-BFGS-B').x
48 optimal_v1, optimal_v2 = optimized_params
49
in phenotype(v1, v2, x, y, u)
31 def phenotype(v1, v2, x, y, u):
32 u_2d = u.reshape(grid_x.shape) # Reshape u to match the grid dimensions
\---\> 33 return (v1 \* np.array(x) + v2 \* np.array(y)) \* laplacian(u_2d)
34
35 # 5. Solve PDE to predict u(x,y) from genotype
ValueError: operands could not be broadcast together with shapes (6,) (100,)
I asked many different AI code model to suggest corrects but none of them fixed anything.