I am facing an issue while training a t5 model. After each evaluation step, the following message is printed, which makes it impossible to maintain an overview. Do you have any ideas, on how I can avoid such behavior?
***** Running Evaluation ***** Num examples = 819 Batch size = 32 Generate config GenerationConfig { "decoder_start_token_id": 0,
"eos_token_id": 1, "output_attentions": true,
"output_hidden_states": true, "pad_token_id": 0,
"transformers_version": "4.26.1" }Generate config GenerationConfig { "decoder_start_token_id": 0,
"eos_token_id": 1, "output_attentions": true,
"output_hidden_states": true, "pad_token_id": 0,
"transformers_version": "4.26.1" }Generate config GenerationConfig { "decoder_start_token_id": 0,
"eos_token_id": 1, "output_attentions": true,
"output_hidden_states": true, "pad_token_id": 0,
"transformers_version": "4.26.1" } ...
from transformers import AutoModelForSeq2SeqLM
model_id="google/flan-t5-base"
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
repository_id = f"{model_id.split('/')[1]}-{dataset_id}"
training_args = Seq2SeqTrainingArguments(
output_dir=repository_id,
#gradient_accumulation_steps = 8,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
predict_with_generate=True,
fp16=False, # Overflows with fp16
learning_rate=5e-6,
num_train_epochs=5,
optim = "adamw_torch",
logging_dir=f"{repository_id}/logs",
logging_strategy="steps",
logging_steps=50,
evaluation_strategy="steps",
eval_steps=5,
save_strategy="steps",
save_total_limit=2,
load_best_model_at_end=True,
report_to="tensorboard",
push_to_hub=False,
hub_strategy="every_save",
hub_model_id=repository_id,
hub_token=HfFolder.get_token(),
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
compute_metrics=compute_metrics,
)
trainer.train()
I tried to change the log level, but that does not help.
import os
os.environ.TF_CPP_MIN_LOG_LEVEL=2