0

I want to use the sktime package for time series classification on a multivariet time series. My time series looks like this:

enter image description here

It is a continious time series dissected into non-overlapping intervals (interval_label) on different sensor node positions (Sensor_ID) each containing different measurements (CO2 etc.).

I've converted my time series to the format expected by sktime and shown in the docs of sktime (https://github.com/sktime/sktime/blob/main/examples/AA_datatypes_and_datasets.ipynb), see "Hierarchical time series - the "pd_multiindex_hier" mtype".

However, I´m still getting the following error when applying the data to a model like this:

# Build model
clf = RocketClassifier(num_kernels=500) 

clf.fit(X_train, y_train)

Out:
TypeError: X is not of a supported input data type.X must be in a supported mtype format for Panel, found <class 'pandas.core.frame.DataFrame'>Use datatypes.check_is_mtype to check conformance with specifications.

I wasn´t sure if i did something wrong in my data structure and tried the example dataset from the sktime website:

# define dataset
test_df = get_examples(mtype="pd_multiindex_hier", as_scitype="Hierarchical")[0]

# Derive X_train, y_train
X_train = test_df[['var_1']].copy()
y_train = np.array(test_df.var_0)

When I check for the correct mtype, I get the expected output:

from sktime.datatypes import check_is_mtype

check_is_mtype(X_train, mtype="pd_multiindex_hier", return_metadata=True)

Out:
(True,
 None,
 {'is_univariate': True,
  'is_empty': False,
  'has_nans': False,
  'n_instances': 6,
  'is_one_series': False,
  'is_equal_length': True,
  'is_equally_spaced': True,
  'n_panels': 2,
  'is_one_panel': False,
  'mtype': 'pd_multiindex_hier',
  'scitype': 'Hierarchical'})

But even with the example data from sktime, I still get the mentioned error when fitting the model. Does anyone have an idea what could be the problem here?

pascal_
  • 61
  • 5

0 Answers0