we want to analyze a Mixed Linear Model. One of the fixed effects (POSITION) has a z-value of 0 and a p-value of 1, despite it should have a significant effect (a graph shows it and it is correct in substance). Do you know how we can fix that issue? If you need further information/pieces of code, I can upload it.
Thanks in advance!
Sebastian :)
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.877e-01 5.706e-01 -1.731 0.0835 .
Risikodarstellung 1.336e+00 7.688e-01 1.738 0.0822 .
Icon -7.823e-01 7.719e-01 -1.013 0.3108
Position -2.089e-05 1.178e-01 0.000 0.9999
Risikodarstellung:Icon -8.132e-02 1.106e+00 -0.074 0.9414
Risikodarstellung:Position 3.277e-01 1.653e-01 1.983 0.0474 *
Icon:Position 8.021e-01 1.777e-01 4.513 6.4e-06 ***
Risikodarstellung:Icon:Position -4.486e-01 2.613e-01 -1.717 0.0860 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
This is the code for the model:
#Linear mixed model
daten.long <- daten.long %>%
mutate(Risikodarstellung = recode(Risikodarstellung, "absolut" = 1, "relativ" = 0))
daten.long <- daten.long %>%
mutate(Szenario = recode(Szenario, "Szenario1Order" = 1, "Szenario2Order" = 2, "Szenario3Order" = 3, "Szenario4Order" = 4, "Szenario5Order" = 5, "Szenario6Order" = 6))
daten.long <- daten.long %>%
mutate(Icon = recode(Icon, "nein" = 0, "ja" = 1))
daten.long$Ergebnis <- as.numeric(daten.long$Ergebnis)
options(contrasts = c("contr.sum", "contr.sum"))
cc_full.mod <- glmer(Ergebnis ~ 1 + Risikodarstellung*Icon*Position + (1 |id), data = daten.long, family = binomial,control=glmerControl(optimizer="bobyqa"))
allFit(cc_full.mod) #Da hier der bobyqa-optimizier hier "[OK]" zeigt, haben wir diesen in der oberen Zeile implementiert
summary(cc_full.mod)
We have no clue how this could have happened. The code looks okay and the graph shows the effect of Position...