Below is some simulated data. I would like some help in a) Plotting observed vs. predicted risk by 3 quantile groups Q1-Q3 and then run H-L test to report Chi squared statistic and p-value for goodness of fit for the subdistribution model. b) Aligning the x-axis labels to display horizontally in one line. (X-axis labels are hardcoded in the package function.) c) Getting the baseline subhazard Cumulative Incidence Function CIF at time=30.
library(simstudy)
library(data.table)
library(survival)
library(riskRegression)
library(cmprsk)
library(prodlim)
#Generate time to event data
d1 <- defData(varname = "x1", formula = .5, dist = "binary")
d1 <- defData(d1, "x2", .5, dist = "binary")
dS <- defSurv(varname = "event_1", formula = "-12 - 0.1*x1 - 0.2*x2", shape = 0.3)
dS <- defSurv(dS, "event_2", "-12 - 0.3*x1 - 0.2*x2", shape = 0.3)
dS <- defSurv(dS, "event_3", "-12 - 0.4*x1 - 0.3*x2", shape = 0.3)
dS <- defSurv(dS, "censor", "-13", shape = 0.3)
set.seed(2140)
dtCov <- genData(3001, d1)
dtSurv <- genSurv(dtCov, dS)
head(dtSurv)
f <- "(time==censor)*0 + (time==event_1)*1 + (time==event_2)*2 + (time==event_3)*3"
cdef <- defDataAdd(varname = "time",
formula = "pmin(censor, event_1, event_2, event_3)", dist = "nonrandom")
cdef <- defDataAdd(cdef, varname = "event",
formula = f,
dist = "nonrandom")
dtSurv_final <- addCompRisk(dtSurv,
events = c("event_1", "event_2", "event_3", "censor"),
timeName = "time", censorName = "censor")
head(dtSurv_final)
#Fit subdistribution model
crr<-riskRegression::FGR(Hist(time, event)~ x1+x2 ,data=dtSurv_final, cause=1)
crr.object<-riskRegression::Score(list(model1=crr),
Hist(time,event)~1,data=dtSurv_final, cause=1, times=30, plots="cal")
#Store model output
cal<-crr.object[["Calibration"]]$plotframe %>% as.data.frame()
#Need Hosmer lemeshow Chi square statistic and p-value to determine goodness of fit by comparing the risk groups in the plot below:
riskRegression::plotCalibration(crr.object,
bars=TRUE,
q=3,
cens.method="local",
ylim=c(0,.50),
names=paste0("Q",c(1:3)),
names.cex=1.1)
I tried getting the observed and predicted risks from cal
but have been unable to do so.