I'm a total newbie in NLP. I'm currently working on fine tuning wav2vec2.0 model with huggingface libraries(datasets, transformers). I have built some script to fine tune the model with common voice dataset. I followed some useful scripts from huggingface guides on fine tuning wav2vec2.0 but I'm not sure if I did right.
Can anyone explain any possible misunderstanding I made from my code and how to fix it.
from datasets import load_dataset, load_metric, concatenate_datasets
import jieba
import json
import re
from transformers import (
Wav2Vec2CTCTokenizer,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
Wav2Vec2ForCTC,
TrainingArguments,
Trainer
)
from typing import Any, Dict, List, Optional, Union
from dataclasses import dataclass, field
import torch
import numpy as np
import torchaudio
#1.Prepare Dataset.
covost_ch_train = load_dataset("mozilla-foundation/common_voice_11_0", "zh-CN", split="train")
covost_ch_test = load_dataset("mozilla-foundation/common_voice_11_0", "zh-CN", split="test")
covost_ch_val = load_dataset("mozilla-foundation/common_voice_11_0", "zh-CN", split="validation")
covost_ch_train = covost_ch_train.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
covost_ch_test = covost_ch_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
covost_ch_val = covost_ch_val.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
#2. Preprocess datasets.
chars_to_ignore_regex = '[\.\。\?\!\;\:\"\《\》\、\~]'
vocab_path = "./vocab_zh-cn_0808.json"
FULLWIDTH_TO_HALFWIDTH = str.maketrans(
' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!゛#$%&()*+、ー。/:;〈=〉?@[]^_‘{|}~',
' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&()*+,-./:;<=>?@[]^_`{|}~',
)
def fullwidth_to_halfwidth(s):
return s.translate(FULLWIDTH_TO_HALFWIDTH)
def preprocess_text(batch):
batch["sentence"] = fullwidth_to_halfwidth(batch["sentence"])
batch["sentence"] = " ".join(list(jieba.cut(batch["sentence"], cut_all=True))) # spliting into smallest token.
batch["sentence"] = re.sub(chars_to_ignore_regex,' ', batch["sentence"]).lower() #remove special char
return batch
def createVocabList(dataset):
def extract_all_chars(batch):
all_text = " ".join(batch["sentence"])
vocab = list(set(all_text))
return {"vocab": [vocab], "all_text": [all_text]}
dataset=dataset.map(preprocess_text)
vocab_train = dataset.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=dataset.column_names) #concat all text
vocab_list = list(set(vocab_train["vocab"][0]) ) #convert to set
vocab_list = sorted(vocab_list)
vocab_dict = {v: k for k, v in enumerate(vocab_list)} # convert to dict
vocab_dict["|"] = vocab_dict[" "]
del vocab_dict[" "]
vocab_dict["[UNK]"] = len(vocab_dict)
vocab_dict["[PAD]"] = len(vocab_dict)
with open(vocab_path, 'w')as vocab_file:
json.dump(vocab_dict, vocab_file)
print(vocab_dict)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = torchaudio.functional.resample(speech_array, sampling_rate, 16000)[0].numpy()
batch["target_text"] = batch["sentence"]
return batch
createVocabList(concatenate_datasets([covost_ch_train, covost_ch_val]))
datasets_train = concatenate_datasets([covost_ch_train, covost_ch_val])
datasets_train = datasets_train.map(preprocess_text)
datasets_train = datasets_train.map(speech_file_to_array_fn, remove_columns=datasets_train.column_names)
datasets_test = concatenate_datasets([covost_ch_test])
datasets_test = datasets_test.map(preprocess_text)
datasets_test = datasets_test.map(speech_file_to_array_fn, remove_columns=datasets_test.column_names)
#3. initialize required instances to train wav2vec2 model. Tokenizer, feature_extractor, processor, trianer, training arguments, and custom data collator class.
tokenizer = Wav2Vec2CTCTokenizer(vocab_path, unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=True)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
def prepare_dataset(batch):
batch["input_values"] = processor(batch["speech"], sampling_rate=16000, padding=True).input_values
with processor.as_target_processor():
batch["labels"] = processor(batch["target_text"]).input_ids
return batch
datasets_train = datasets_train.map(prepare_dataset, batch_size=4, batched=True)
datasets_test = datasets_test.map(prepare_dataset, batch_size=4, batched=True)
wer_metric = load_metric("wer")
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.Wav2Vec2Processor`)
The processor used for processing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_length_labels (:obj:`int`, `optional`):
Maximum length of the ``labels`` returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
processor: Wav2Vec2Processor
padding: Union[bool, str] = True
max_length: Optional[int] = None
max_length_labels: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
batch = self.processor.pad(
input_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
with self.processor.as_target_processor():
labels_batch = self.processor.pad(
label_features,
padding=self.padding,
max_length=self.max_length_labels,
pad_to_multiple_of=self.pad_to_multiple_of_labels,
return_tensors="pt",
)
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
#4. put them all together.
data_collator=DataCollatorCTCWithPadding(processor=processor, padding=True)
model = Wav2Vec2ForCTC.from_pretrained(
"facebook/wav2vec2-large-xlsr-53",
attention_dropout=0.1,
hidden_dropout=0.1,
feat_proj_dropout=0.0,
mask_time_prob=0.05,
layerdrop=0.1,
gradient_checkpointing=True,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer)
)
model.freeze_feature_extractor()
model_temp_output_dir = "./wav2vec2-large-xlsr-jp-test0807_hiragana"
training_args = TrainingArguments(
output_dir=model_temp_output_dir,
group_by_length=True,
per_device_train_batch_size=3,
gradient_accumulation_steps=2,
per_device_eval_batch_size=2,
num_train_epochs=50,
fp16=True,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_strategy="epoch",
learning_rate=3e-4,
warmup_steps=500,
save_total_limit=1,
push_to_hub=True,
# no_cuda=True
)
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=datasets_train,
eval_dataset=datasets_test,
tokenizer=processor.feature_extractor,
)