1
from datasets import load_dataset

books = load_dataset('higashi1/mymulti30k',  "en-de")



from transformers import AutoTokenizer

#checkpoint = "./logs/"
checkpoint = "t5-base"
tokenizer = AutoTokenizer.from_pretrained(checkpoint,use_fast=False)

source_lang = "en"
target_lang = "de"
prefix = "translate English to German: "


def preprocess_function(examples):
    inputs = [prefix + example for example in examples["en"]]
    targets = [example for example in examples["de"]]
    model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
    return model_inputs

tokenized_books = books.map(preprocess_function, batched=True)


from transformers import DataCollatorForSeq2Seq

data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)

import evaluate

metric = evaluate.load("sacrebleu")

import numpy as np


def postprocess_text(preds, labels):
    preds = [pred.strip() for pred in preds]
    labels = [[label.strip()] for label in labels]

    return preds, labels


def compute_metrics(eval_preds):
    preds, labels = eval_preds
    if isinstance(preds, tuple):
        preds = preds[0]
    decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

    result = metric.compute(predictions=decoded_preds, references=decoded_labels)
    result = {"bleu": result["score"]}

    prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
    result["gen_len"] = np.mean(prediction_lens)
    result = {k: round(v, 4) for k, v in result.items()}
    return result

from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer

model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)

training_args = Seq2SeqTrainingArguments(
    output_dir="my__model",
    evaluation_strategy="epoch",
    learning_rate=2e-5,#2e-5
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    weight_decay=0.01,
    save_total_limit=3,
    num_train_epochs=1,
    predict_with_generate=True,
    fp16=True,
    push_to_hub=False,
    report_to="none",
    generation_max_length =30
)
#generation_max_length =128
trainer = Seq2SeqTrainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_books["train"],
    eval_dataset=tokenized_books["test"],
    tokenizer=tokenizer,
    data_collator=data_collator,
    compute_metrics=compute_metrics,
)
#trainer.train()
#trainer.save_model("./logs/")



pred_result = trainer.predict(tokenized_books["test"])

I set generation_max_length to 30, but I get the error below. I output pred_result[0].shape, but I get (461, 20).

But the above code produces the following error. IndexError Traceback (most recent call last) Cell In[17], line 1 ----> 1 pred_result = trainer.predict(tokenized_books["test"])

File D:\anaconda\lib\site-packages\transformers\trainer_seq2seq.py:216, in Seq2SeqTrainer.predict(self, test_dataset, ignore_keys, metric_key_prefix, **gen_kwargs)
    211 gen_kwargs["num_beams"] = (
    212     gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
    213 )
    214 self._gen_kwargs = gen_kwargs
--> 216 return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)

File D:\anaconda\lib\site-packages\transformers\trainer.py:3129, in Trainer.predict(self, test_dataset, ignore_keys, metric_key_prefix)
   3126 start_time = time.time()
   3128 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
-> 3129 output = eval_loop(
   3130     test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
   3131 )
   3132 total_batch_size = self.args.eval_batch_size * self.args.world_size
   3133 if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:

File D:\anaconda\lib\site-packages\transformers\trainer.py:3353, in Trainer.evaluation_loop(self, dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix)
   3349         metrics = self.compute_metrics(
   3350             EvalPrediction(predictions=all_preds, label_ids=all_labels, inputs=all_inputs)
   3351         )
   3352     else:
-> 3353         metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
   3354 else:
   3355     metrics = {}

Cell In[15], line 23, in compute_metrics(eval_preds)
     21 if isinstance(preds, tuple):
     22     preds = preds[0]
---> 23 decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
     25 labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
     26 decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

File D:\anaconda\lib\site-packages\transformers\tokenization_utils_base.py:3469, in PreTrainedTokenizerBase.batch_decode(self, sequences, skip_special_tokens, clean_up_tokenization_spaces, **kwargs)
   3445 def batch_decode(
   3446     self,
   3447     sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"],
   (...)
   3450     **kwargs,
   3451 ) -> List[str]:
   3452     """
   3453     Convert a list of lists of token ids into a list of strings by calling decode.
   3454 
   (...)
   3467         `List[str]`: The list of decoded sentences.
   3468     """
-> 3469     return [
   3470         self.decode(
   3471             seq,
   3472             skip_special_tokens=skip_special_tokens,
   3473             clean_up_tokenization_spaces=clean_up_tokenization_spaces,
   3474             **kwargs,
   3475         )
   3476         for seq in sequences
   3477     ]

File D:\anaconda\lib\site-packages\transformers\tokenization_utils_base.py:3470, in <listcomp>(.0)
   3445 def batch_decode(
   3446     self,
   3447     sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"],
   (...)
   3450     **kwargs,
   3451 ) -> List[str]:
   3452     """
   3453     Convert a list of lists of token ids into a list of strings by calling decode.
   3454 
   (...)
   3467         `List[str]`: The list of decoded sentences.
   3468     """
   3469     return [
-> 3470         self.decode(
   3471             seq,
   3472             skip_special_tokens=skip_special_tokens,
   3473             clean_up_tokenization_spaces=clean_up_tokenization_spaces,
   3474             **kwargs,
   3475         )
   3476         for seq in sequences
   3477     ]

File D:\anaconda\lib\site-packages\transformers\tokenization_utils_base.py:3509, in PreTrainedTokenizerBase.decode(self, token_ids, skip_special_tokens, clean_up_tokenization_spaces, **kwargs)
   3506 # Convert inputs to python lists
   3507 token_ids = to_py_obj(token_ids)
-> 3509 return self._decode(
   3510     token_ids=token_ids,
   3511     skip_special_tokens=skip_special_tokens,
   3512     clean_up_tokenization_spaces=clean_up_tokenization_spaces,
   3513     **kwargs,
   3514 )

File D:\anaconda\lib\site-packages\transformers\tokenization_utils.py:931, in PreTrainedTokenizer._decode(self, token_ids, skip_special_tokens, clean_up_tokenization_spaces, spaces_between_special_tokens, **kwargs)
    921 def _decode(
    922     self,
    923     token_ids: List[int],
   (...)
    927     **kwargs,
    928 ) -> str:
    929     self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
--> 931     filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
    933     # To avoid mixing byte-level and unicode for byte-level BPT
    934     # we need to build string separately for added tokens and byte-level tokens
    935     # cf. https://github.com/huggingface/transformers/issues/1133
    936     sub_texts = []

File D:\anaconda\lib\site-packages\transformers\tokenization_utils.py:912, in PreTrainedTokenizer.convert_ids_to_tokens(self, ids, skip_special_tokens)
    910         tokens.append(self.added_tokens_decoder[index])
    911     else:
--> 912         tokens.append(self._convert_id_to_token(index))
    913 return tokens

File D:\anaconda\lib\site-packages\transformers\models\t5\tokenization_t5.py:312, in T5Tokenizer._convert_id_to_token(self, index)
    310 """Converts an index (integer) in a token (str) using the vocab."""
    311 if index < self.sp_model.get_piece_size():
--> 312     token = self.sp_model.IdToPiece(index)
    313 else:
    314     token = f"<extra_id_{self.vocab_size - 1 - index}>"

File D:\anaconda\lib\site-packages\sentencepiece\__init__.py:1045, in _batchnize.<locals>._batched_func(self, arg)
   1043   return [_func(self, n) for n in arg]
   1044 else:
-> 1045   return _func(self, arg)

File D:\anaconda\lib\site-packages\sentencepiece\__init__.py:1038, in _batchnize.<locals>._func(v, n)
   1036 def _func(v, n):
   1037   if type(n) is int and (n < 0 or n >= v.piece_size()):
-> 1038     raise IndexError('piece id is out of range.')
   1039   return func(v, n)

IndexError: piece id is out of range.

Modify generation_max_length to 20 and the error disappears.

I wish I could generate longer sentences.

HIKARI
  • 11
  • 1

0 Answers0