I am new to PySpark and I encounter a configuration problem in using it.
I tried to create a dataframe using the below code snippet:
from pyspark.sql import SparkSession
# Create a SparkSession object
spark = SparkSession.builder.appName("CreateDataFrame").getOrCreate()
# Use the SparkSession object to create a DataFrame
df_day_of_week = spark.createDataFrame([(0, "Sunday"), (1, "Monday"), (2, "Tuesday"), (3, "Wednesday"), (4, "Thursday"), (5, "Friday"), (6, "Saturday")], ["day_of_week_num", "day_of_week"])
# Show the DataFrame
df_day_of_week.show()
Below is the error:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
Cell In[2], line 10
7 df_day_of_week = spark.createDataFrame([(0, "Sunday"), (1, "Monday"), (2, "Tuesday"), (3, "Wednesday"), (4, "Thursday"), (5, "Friday"), (6, "Saturday")], ["day_of_week_num", "day_of_week"])
9 # Show the DataFrame
---> 10 df_day_of_week.show()
File c:\Users\User\anaconda3\envs\data_streaming\lib\site-packages\pyspark\sql\dataframe.py:899, in DataFrame.show(self, n, truncate, vertical)
893 raise PySparkTypeError(
894 error_class="NOT_BOOL",
895 message_parameters={"arg_name": "vertical", "arg_type": type(vertical).__name__},
896 )
898 if isinstance(truncate, bool) and truncate:
--> 899 print(self._jdf.showString(n, 20, vertical))
900 else:
901 try:
File c:\Users\User\anaconda3\envs\data_streaming\lib\site-packages\py4j\java_gateway.py:1322, in JavaMember.__call__(self, *args)
1316 command = proto.CALL_COMMAND_NAME +\
1317 self.command_header +\
1318 args_command +\
1319 proto.END_COMMAND_PART
1321 answer = self.gateway_client.send_command(command)
-> 1322 return_value = get_return_value(
1323 answer, self.gateway_client, self.target_id, self.name)
1325 for temp_arg in temp_args:
1326 if hasattr(temp_arg, "_detach"):
File c:\Users\User\anaconda3\envs\data_streaming\lib\site-packages\pyspark\errors\exceptions\captured.py:169, in capture_sql_exception..deco(*a, **kw)
167 def deco(*a: Any, **kw: Any) -> Any:
168 try:
--> 169 return f(*a, **kw)
170 except Py4JJavaError as e:
171 converted = convert_exception(e.java_exception)
File c:\Users\User\anaconda3\envs\data_streaming\lib\site-packages\py4j\protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
331 "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
332 format(target_id, ".", name, value))
Py4JJavaError: An error occurred while calling o65.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 16) (host.docker.internal executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:192)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:166)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
at org.apache.spark.scheduler.Task.run(Task.scala:139)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)
at java.base/java.lang.Thread.run(Thread.java:833)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.base/sun.nio.ch.NioSocketImpl.timedAccept(NioSocketImpl.java:708)
at java.base/sun.nio.ch.NioSocketImpl.accept(NioSocketImpl.java:752)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:675)
at java.base/java.net.ServerSocket.platformImplAccept(ServerSocket.java:641)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:617)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:574)
at java.base/java.net.ServerSocket.accept(ServerSocket.java:532)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:179)
... 30 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2785)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2721)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2720)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2720)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1206)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1206)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1206)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2984)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2923)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2912)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:971)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2263)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2284)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2303)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:530)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:483)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:61)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:4177)
at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:3161)
at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4167)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:526)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:4165)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:118)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:195)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:103)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4165)
at org.apache.spark.sql.Dataset.head(Dataset.scala:3161)
at org.apache.spark.sql.Dataset.take(Dataset.scala:3382)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:284)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:323)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:568)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.base/java.lang.Thread.run(Thread.java:833)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:192)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:166)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
at org.apache.spark.scheduler.Task.run(Task.scala:139)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.base/sun.nio.ch.NioSocketImpl.timedAccept(NioSocketImpl.java:708)
at java.base/sun.nio.ch.NioSocketImpl.accept(NioSocketImpl.java:752)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:675)
at java.base/java.net.ServerSocket.platformImplAccept(ServerSocket.java:641)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:617)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:574)
at java.base/java.net.ServerSocket.accept(ServerSocket.java:532)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:179)
... 30 more
Below are my configurations:
- Java 8.0.3710.11
- JDK 17.0.7
- Spark 3.4.1
- Hadoop 3.0.0
- pyspark 3.4.1
However, I can run read.csv succesfully, for example:
test= spark.read.csv('test.csv', header=True, sep='|')
Therefore, I cannot figure out the underlying problem.
Please let me know if extra information is required, thanks.