I am doing the following:
branques_Idescat_EU <- indexIPI_branques_EU_wide %>%
mutate(alimentació = round(C10*(C10/(C10+C11+C12)) + C11*(C11/(C10+C11+C12)) + C12*(C12/(C10+C11+C12)), 1),
tèxtil = round(C13*(C13/(C13+C14+C15)) + C14*(C14/(C13+C14+C15)) + C15*(C15/(C13+C14+C15)), 1),
paper = round(C17*(C17/(C17+C18)) + C18*(C18/(C17+C18)), 1),
químiques = C20,
farmàcia = C21,
plàstics = C22,
minerals = C23,
metalurgia = round(C24*(C24/(C24+C25)) + C25*(C25/(C24+C25)), 1),
electrònica = round(C26*(C26/(C26+C27)) + C27*(C27/(C26+C27)), 1),
maquinària = C28,
transport = round(C29*(C29/(C29+C30)) + C30*(C30/(C29+C30)), 1),
altres = round(C16*(C16/(C16+C31+C32+C33)) + C31*(C31/(C16+C31+C32+C33)) + C32*(C32/(C16+C31+C32+C33)) + C33*(C33/(C16+C31+C32+C33)),1),
energia = D35,
aigua = E36,
na.rm=TRUE) %>%
select(time, geo, alimentació:aigua)
And I need to add na.rm=TRUE
in each new variable. For instance, in alimentacio
I get NA because the variable C10
has only NAs values. But I don't know where to place na.rm=TRUE
in the equation below:
alimentació = round(C10*(C10/(C10+C11+C12)) + C11*(C11/(C10+C11+C12)) + C12*(C12/(C10+C11+C12)), 1)
Sample data:
structure(list(geo = c("Alemanya", "Alemanya", "Alemanya", "Alemanya",
"Alemanya", "Alemanya", "Alemanya", "Alemanya", "Espanya", "Espanya",
"Espanya", "Espanya", "Espanya", "Espanya", "Espanya", "Espanya",
"Espanya", "Espanya", "Espanya", "Espanya", "Espanya"), time = c("oct. 2022",
"nov. 2022", "des. 2022", "gen. 2023", "febr. 2023", "març 2023",
"abr. 2023", "maig 2023", "gen. 2002", "febr. 2002", "març 2002",
"abr. 2002", "maig 2002", "juny 2002", "jul. 2002", "ag. 2002",
"set. 2002", "oct. 2002", "nov. 2002", "des. 2002", "gen. 2003"
), C10 = c(104.2, 111.5, 100.2, 100.7, 97.6, 116.7, 98, 108.7,
84.1, 82.1, 82.3, 93.3, 93.9, 89.8, 96.2, 88.5, 89.7, 103, 98.9,
87.2, 87.7), C11 = c(89.7, 100.6, 93.9, 90, 86.5, 103.6, 91.7,
109.4, 89.8, 88.6, 84.1, 103.8, 114.2, 102.6, 130.8, 104.2, 95.7,
120.6, 110.9, 93.8, 91.9), C12 = c(56.4, 71.4, 67, 64.3, 63.7,
69.4, 62, 60.1, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA), C13 = c(86.3, 91.3, 69.1, 88, 84.5, 99.5, 82.3, 89.4, 211.7,
207, 202.9, 228.5, 237.4, 206.8, 224, 68.5, 200.5, 232, 214.2,
169.8, 200.2), C14 = c(65.2, 79.3, 74.6, 71.6, 68.8, 76.4, 67.3,
76.9, 267.9, 284.1, 276.4, 229.6, 228.8, 218.1, 285.6, 201.7,
283.9, 275, 227.4, 190.3, 243.4), C15 = c(107.5, 114, 84.8, 107.4,
111.8, 130.8, 101.1, 110.9, 274.6, 281.8, 254.3, 255, 233.8,
219.8, 295.9, 166.8, 262.9, 268.8, 235.6, 228.4, 265.4), C16 = c(93.5,
98.9, 75.8, 81.2, 86, 104, 88.5, 93.2, 216, 214.9, 212.5, 244.9,
246.2, 224.6, 245.4, 98.2, 218.4, 255.7, 252, 212, 222), C17 = c(89.2,
92.2, 74, 88.3, 81.6, 91, 74.7, 81.8, 99, 94.3, 95.9, 102.8,
102.5, 95.7, 104.3, 75.6, 94.4, 106.5, 98.6, 86.7, 100.2), C18 = c(70.1,
75.7, 70, 61.6, 61.3, 71.6, 59.9, 61.9, 134.3, 129.3, 136.7,
147.2, 146.9, 138.6, 137, 108.1, 140.4, 151.6, 150.3, 139.9,
127.3), C19 = c(98.5, 98, 100.7, 89.9, 81.7, 92.5, 80.7, 73.1,
81.5, 72.4, 79, 80.2, 81.1, 86.4, 83.7, 84.3, 77.3, 84.9, 81.4,
94.4, 85.8), C20 = c(76, 80, 69.2, 84.6, 81.4, 88.3, 76.6, 78.7,
90.5, 90.1, 90.2, 99.1, 99.2, 91.4, 102.1, 74.6, 97.6, 106.5,
96.4, 81.2, 97.9), C21 = c(128.5, 127.3, 127.4, 117.8, 112.6,
133.1, 117.6, 110.3, 72.4, 71.6, 65, 71.6, 72.7, 69.4, 79.1,
33.7, 68.2, 83.2, 79.3, 60.9, 73.4), C22 = c(92.8, 98.1, 71.1,
92, 93.4, 105.2, 86.7, 92.3, 113.4, 119, 111.3, 124.5, 123.8,
113.1, 123.4, 75.4, 120.8, 126.8, 118.1, 91.7, 116.3), C23 = c(104.5,
107, 79.5, 80.2, 85, 103, 88.9, 94.3, 229.5, 231.7, 235.6, 245.4,
255.5, 241.3, 253.3, 178.9, 237.8, 266.8, 244.9, 200.2, 224.8
), C24 = c(84.1, 84.7, 68, 87.9, 86.3, 96.7, 84.8, 88.7, 117.1,
118.2, 119.3, 127.4, 132.1, 124.1, 117.9, 76.2, 126.9, 137.5,
122, 98.6, 117.7), C25 = c(99.7, 108.5, 86, 94.6, 97.3, 113.7,
92.7, 99.9, 143, 151.6, 140.5, 166.2, 165.2, 156.7, 173.8, 93.9,
164.6, 183.8, 163.9, 136.1, 148.4), C26 = c(117.2, 135.3, 129.7,
114.9, 118.3, 147.4, 115, 124.1, 167, 170.8, 168.9, 165.1, 172.3,
164.8, 168.1, 83.6, 171.2, 176.7, 176.7, 173.6, 143.4), C27 = c(108,
119.4, 99.1, 107, 112.3, 125.7, 99.7, 109.7, 132.4, 131.6, 127.3,
138, 149.8, 139.2, 159.7, 71.6, 143.3, 170.4, 148.2, 128.8, 139.8
), C28 = c(92.8, 108.3, 116, 85.2, 91.3, 109.8, 86, 94.2, 111.1,
112.7, 111.5, 123.7, 128.1, 116.5, 137.1, 62.5, 114.9, 129.1,
115.4, 129.8, 94.9), C29 = c(77.5, 97.7, 74, 80.1, 92.7, 106.2,
79.4, 90.9, 112, 114.9, 107.6, 121.2, 124, 117.7, 117.1, 50.1,
119.5, 128.1, 122.7, 82.9, 113.3), C30 = c(122, 148.4, 121.6,
130.5, 133.1, 152.7, 118.1, 132.4, 155.7, 154.7, 144.9, 163.6,
167.9, 161.7, 160.6, 69.6, 165.7, 177, 160.2, 131.1, 147.6),
C31 = c(84.9, 94.7, 74, 75.8, 81, 95.9, 77.9, 86.2, 256.8,
257.9, 242.7, 269.3, 285.5, 251.3, 310.5, 121.1, 261.9, 300.9,
269.8, 237.6, 253.8), C32 = c(110.6, 123.8, 110.5, 100.1,
109.2, 127.1, 101.1, 109.4, 112.5, 115, 109.9, 128.6, 127.5,
121.5, 126.8, 57.5, 124.6, 138.1, 121.4, 102.6, 111.7), C33 = c(94.5,
117, 149.2, 87, 91.7, 114.1, 94.9, 103.6, 105.4, 88, 85.3,
94.9, 93.6, 98.9, 100.4, 75.6, 125.2, 92.4, 81.8, 91.7, 79.9
), D35 = c(80.5, 86.7, 89.7, 92.7, 84.4, 86.6, 73.8, 67,
115.2, 95.5, 97.9, 94.2, 92.1, 97.1, 102.3, 92, 93.3, 96.1,
95.9, 101.1, 111.9), E36 = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
)), row.names = c(NA, -21L), class = c("tbl_df", "tbl", "data.frame"
))