0

Problem statement 

A hive view is created using beeline to restrict the users from accessing the original hive table since the data contains sensitive information. 

For illustration purpose, let's consider a sensitive table as emp_db.employee with columns id, name, salary created through beeline by user 'userA'

create external table emp_db.employee (id int, name string, salary double) location '<hdfs_path>'

A view is created using beeline by the same user 'userA'

create view empview_db.emp_v  as select id,name from emp_db.employee' 

From Ranger UI, we define a policy under Hadoop SQL Policies that will let 'userB' to access database - empview_db  and table - emp_v with SELECT permission.

Steps to replicate 

  1. ssh to edge node where beeline is available using userB

  2. Try executing following queries

Select * from emp_db.employee; desc formatted empview_db.emp_v ;

Above queries works fine without any issues.

  1. Now, try using spark3-shell using userB 

    spark3-shell --deploy-mode client

    Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 23/07/08 01:24:09 WARN HiveConf: HiveConf of name hive.masking.algo does not exist Spark context Web UI available at http://xxxxxxx:4040 Spark context available as 'sc' (master = yarn, app id = application_xxx_xxx). Spark session available as 'spark'. Welcome to       ____              __      / /  ___ / /     \ / _ / _ `/ __/  '/    // .__/_,// //_\   version 3.3.0.3.3.7180.0-274       //           Using Scala version 2.12.15 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_181) Type in expressions to have them evaluated. Type :help for more information.scala> spark.table("empview_db.emp_v").schema 23/07/08 01:24:30 WARN HiveClientImpl: Detected HiveConf hive.execution.engine is 'tez' and will be reset to 'mr' to disable useless hive logic Hive Session ID = b1e3c813-aea9-40da-9012-949e82d4205e org.apache.spark.sql.AnalysisException: org.apache.hadoop.hive.ql.metadata.HiveException: Unable to fetch table employee. Permission denied: user [userB] does not have [SELECT] privilege on [emp_db/employee]   at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:110)   at org.apache.spark.sql.hive.HiveExternalCatalog.tableExists(HiveExternalCatalog.scala:877)   at org.apache.spark.sql.catalyst.catalog.ExternalCatalogWithListener.tableExists(ExternalCatalogWithListener.scala:146)   at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:488)   at org.apache.spark.sql.catalyst.catalog.SessionCatalog.requireTableExists(SessionCatalog.scala:224)   at org.apache.spark.sql.catalyst.catalog.SessionCatalog.getTableRawMetadata(SessionCatalog.scala:514)   at org.apache.spark.sql.catalyst.catalog.SessionCatalog.getTableMetadata(SessionCatalog.scala:500)   at org.apache.spark.sql.execution.datasources.v2.V2SessionCatalog.loadTable(V2SessionCatalog.scala:66)   at org.apache.spark.sql.connector.catalog.CatalogV2Util$.loadTable(CatalogV2Util.scala:311)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.$anonfun$lookupRelation$3(Analyzer.scala:1206)   at scala.Option.orElse(Option.scala:447)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.$anonfun$lookupRelation$1(Analyzer.scala:1205)   at scala.Option.orElse(Option.scala:447)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupRelation(Analyzer.scala:1197)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$13.applyOrElse(Analyzer.scala:1068)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$13.applyOrElse(Analyzer.scala:1032)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$3(AnalysisHelper.scala:138)   at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$1(AnalysisHelper.scala:138)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:323)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning(AnalysisHelper.scala:134)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning$(AnalysisHelper.scala:130)   at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUpWithPruning(LogicalPlan.scala:30)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$2(AnalysisHelper.scala:135)   at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1228)   at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1227)   at org.apache.spark.sql.catalyst.plans.logical.OrderPreservingUnaryNode.mapChildren(LogicalPlan.scala:208)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$1(AnalysisHelper.scala:135)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:323)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning(AnalysisHelper.scala:134)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning$(AnalysisHelper.scala:130)   at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUpWithPruning(LogicalPlan.scala:30)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$2(AnalysisHelper.scala:135)   at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1228)   at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1227)   at org.apache.spark.sql.catalyst.plans.logical.OrderPreservingUnaryNode.mapChildren(LogicalPlan.scala:208)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$1(AnalysisHelper.scala:135)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:323)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning(AnalysisHelper.scala:134)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning$(AnalysisHelper.scala:130)   at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUpWithPruning(LogicalPlan.scala:30)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:1032)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:991)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:211)   at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126)   at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122)   at scala.collection.immutable.List.foldLeft(List.scala:91)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:208)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:200)   at scala.collection.immutable.List.foreach(List.scala:431)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:200)   at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:227)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.$anonfun$resolveViews$2(Analyzer.scala:1012)   at org.apache.spark.sql.internal.SQLConf$.withExistingConf(SQLConf.scala:158)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.$anonfun$resolveViews$1(Analyzer.scala:1012)   at org.apache.spark.sql.catalyst.analysis.AnalysisContext$.withAnalysisContext(Analyzer.scala:166)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$resolveViews(Analyzer.scala:1004)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$resolveViews(Analyzer.scala:1020)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$13.$anonfun$applyOrElse$47(Analyzer.scala:1068)   at scala.Option.map(Option.scala:230)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$13.applyOrElse(Analyzer.scala:1068)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$13.applyOrElse(Analyzer.scala:1032)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$3(AnalysisHelper.scala:138)   at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$1(AnalysisHelper.scala:138)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:323)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning(AnalysisHelper.scala:134)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning$(AnalysisHelper.scala:130)   at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUpWithPruning(LogicalPlan.scala:30)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:1032)   at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:991)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:211)   at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126)   at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122)   at scala.collection.immutable.List.foldLeft(List.scala:91)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:208)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:200)   at scala.collection.immutable.List.foreach(List.scala:431)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:200)   at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:227)   at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$execute$1(Analyzer.scala:223)   at org.apache.spark.sql.catalyst.analysis.AnalysisContext$.withNewAnalysisContext(Analyzer.scala:172)   at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:223)   at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:187)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:179)   at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88)   at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:179)   at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:208)   at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:330)   at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:207)   at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:76)   at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111)   at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:186)   at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:511)   at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:186)   at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)   at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:185)   at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:76)   at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:74)   at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:66)   at org.apache.spark.sql.Dataset$.$anonfun$ofRows$1(Dataset.scala:91)   at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)   at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:89)   at org.apache.spark.sql.DataFrameReader.table(DataFrameReader.scala:607)   at org.apache.spark.sql.SparkSession.table(SparkSession.scala:600)   ... 47 elided Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: Unable to fetch table employee. Permission denied: user [userB] does not have [SELECT] privilege on [emp_db/employee]   at org.apache.hadoop.hive.ql.metadata.Hive.getTable(Hive.java:1462)   at org.apache.hadoop.hive.ql.metadata.Hive.getTable(Hive.java:1411)   at org.apache.hadoop.hive.ql.metadata.Hive.getTable(Hive.java:1391)   at org.apache.spark.sql.hive.client.Shim_v0_12.getTable(HiveShim.scala:639)   at org.apache.spark.sql.hive.client.HiveClientImpl.getRawTableOption(HiveClientImpl.scala:429)   at org.apache.spark.sql.hive.client.HiveClientImpl.$anonfun$tableExists$1(HiveClientImpl.scala:444)   at scala.runtime.java8.JFunction0$mcZ$sp.apply(JFunction0$mcZ$sp.java:23)   at org.apache.spark.sql.hive.client.HiveClientImpl.$anonfun$withHiveState$1(HiveClientImpl.scala:321)   at org.apache.spark.sql.hive.client.HiveClientImpl.liftedTree1$1(HiveClientImpl.scala:248)   at org.apache.spark.sql.hive.client.HiveClientImpl.retryLocked(HiveClientImpl.scala:247)   at org.apache.spark.sql.hive.client.HiveClientImpl.withHiveState(HiveClientImpl.scala:301)   at org.apache.spark.sql.hive.client.HiveClientImpl.tableExists(HiveClientImpl.scala:444)   at org.apache.spark.sql.hive.HiveExternalCatalog.$anonfun$tableExists$1(HiveExternalCatalog.scala:877)   at scala.runtime.java8.JFunction0$mcZ$sp.apply(JFunction0$mcZ$sp.java:23)   at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:101)   ... 151 more Caused by: org.apache.hadoop.hive.metastore.api.MetaException: Permission denied: user [userB] does not have [SELECT] privilege on [emp_db/employee]   at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$get_table_req_result$get_table_req_resultStandardScheme.read(ThriftHiveMetastore.java)   at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$get_table_req_result$get_table_req_resultStandardScheme.read(ThriftHiveMetastore.java)   at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$get_table_req_result.read(ThriftHiveMetastore.java)   at org.apache.thrift.TServiceClient.receiveBase(TServiceClient.java:88)   at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.recv_get_table_req(ThriftHiveMetastore.java:2378)   at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.get_table_req(ThriftHiveMetastore.java:2365)   at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.getTable(HiveMetaStoreClient.java:2047)   at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.getTable(SessionHiveMetaStoreClient.java:206)   at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)   at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)   at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)   at java.lang.reflect.Method.invoke(Method.java:498)   at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.invoke(RetryingMetaStoreClient.java:213)   at com.sun.proxy.$Proxy48.getTable(Unknown Source)   at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)   at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)   at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)   at java.lang.reflect.Method.invoke(Method.java:498)   at org.apache.hadoop.hive.metastore.HiveMetaStoreClient$SynchronizedHandler.invoke(HiveMetaStoreClient.java:3514)   at com.sun.proxy.$Proxy48.getTable(Unknown Source)   at org.apache.hadoop.hive.ql.metadata.Hive.getTable(Hive.java:1453)   ... 165 more

Expected behavior - we want spark to behave just like beeline where SELECT * from and DESC formatted on view works fine without any errors. 

The CDP 7.1.7 documentation link https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/developing-spark-applications/topics/spark-interaction-with-hive-views.html?  describes 'Interacting Hive Views'. However, the explanation doesn't fit well with the behavior we see from spark3-shell for hive views.

Looking forward for feedback and inputs that may unblock my use case. Please let me know if  you need any further information. 

0 Answers0