I would like to do hierarchical clustering by row and then by column. I came up with this total hack of a solution:
#! /path/to/my/Rscript --vanilla
args <- commandArgs(TRUE)
mtxf.in <- args[1]
clusterMethod <- args[2]
mtxf.out <- args[3]
mtx <- read.table(mtxf.in, as.is=T, header=T, stringsAsFactors=T)
mtx.hc <- hclust(dist(mtx), method=clusterMethod)
mtx.clustered <- as.data.frame(mtx[mtx.hc$order,])
mtx.c.colnames <- colnames(mtx.clustered)
rownames(mtx.clustered) <- mtx.clustered$topLeftColumnHeaderName
mtx.clustered$topLeftColumnHeaderName <- NULL
mtx.c.t <- as.data.frame(t(mtx.clustered), row.names=names(mtx))
mtx.c.t.hc <- hclust(dist(mtx.c.t), method=clusterMethod)
mtx.c.t.c <- as.data.frame(mtx.c.t[mtx.c.t.hc$order,])
mtx.c.t.c.t <- as.data.frame(t(mtx.c.t.c))
mtx.c.t.c.t.colnames <- as.vector(names(mtx.c.t.c.t))
names(mtx.c.t.c.t) <- mtx.c.colnames[as.numeric(mtx.c.t.c.t.colnames) + 1]
write.table(mtx.c.t.c.t, file=mtxf.out, sep='\t', quote=F, row.names=T)
The variables mtxf.in
and mtxf.out
represent the input matrix and clustered output matrix files, respectively. The variable clusterMethod
is one of the hclust
methods, such as single
, average
, etc.
As an example input, here's a data matrix:
topLeftColumnHeaderName col1 col2 col3 col4 col5 col6
row1 0 3 0 0 0 3
row2 6 6 6 6 6 6
row3 0 3 0 0 0 3
row4 6 6 6 6 6 6
row5 0 3 0 0 0 3
row6 0 3 0 0 0 3
Running this script, I lose my top-left corner element from mtxf.in
. Here's the output that comes out of this script:
col5 col4 col1 col3 col2 col6
row6 0 0 0 0 3 3
row5 0 0 0 0 3 3
row1 0 0 0 0 3 3
row3 0 0 0 0 3 3
row2 6 6 6 6 6 6
row4 6 6 6 6 6 6
My questions: In addition to looking for a way to preserve the original structure of the input matrix file, I also don't know how much memory this consumes or whether there are faster and cleaner, more "R"-like ways for doing this.
Is it really this hard to cluster by rows and columns in R? Are there constructive ways to improve this script? Thanks for your advice.