Answer from github issue https://github.com/hwchase17/langchain/issues/3106
"""Agent for working with pandas objects."""
from typing import Any, List, Optional
from langchain.agents.agent import AgentExecutor
# from langchain.agents.agent_toolkits.pandas.prompt import PREFIX, SUFFIX
from langchain.agents import ZeroShotAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
from langchain.tools.python.tool import PythonAstREPLTool
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(memory_key="chat_history")
def create_pandas_dataframe_agent(
llm: BaseLLM,
df: Any,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
**kwargs: Any,
) -> AgentExecutor:
"""Construct a pandas agent from an LLM and dataframe."""
import pandas as pd
if not isinstance(df, pd.DataFrame):
raise ValueError(f"Expected pandas object, got {type(df)}")
if input_variables is None:
input_variables = ["df", "input", "agent_scratchpad"]
tools = [PythonAstREPLTool(locals={"df": df})]
PREFIX = """
You are working with a pandas dataframe in Python. The name of the dataframe is `df`.
You should use the tools below to answer the question posed of you:"""
SUFFIX = """
This is the result of `print(df.head())`:
{df}
Begin!
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=PREFIX,
suffix=SUFFIX,
input_variables=["df", "input", "chat_history", "agent_scratchpad"]
)
print(prompt)
partial_prompt = prompt.partial(df=str(df.head()))
llm_chain = LLMChain(
llm=llm,
prompt=partial_prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(
llm_chain=llm_chain,
allowed_tools=tool_names,
callback_manager=callback_manager,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
callback_manager=callback_manager,
memory = memory
)
```*emphasized text*