0

I used AWS Glue 3.0 and Iceberg Connector 0.13.0 to perform ETL. And it working well. But after upgrading version AWS Glue to 4.0 and Iceberg Connector to 1.2.1 then the error has occurred

I can not read iceberg tables after the upgrade version.
I try searching, but I didn't find the same error when using glue and iceberg.
Any suggest? How can I check this error? Thank you!

The error messages:

py4j.protocol.Py4JJavaError: An error occurred while calling o106.table.
: java.lang.NoClassDefFoundError: com/github/benmanes/caffeine/cache/RemovalListener
    at org.apache.iceberg.spark.SparkCatalog.initialize(SparkCatalog.java:546)
    at org.apache.spark.sql.connector.catalog.Catalogs$.load(Catalogs.scala:60)
    at org.apache.spark.sql.connector.catalog.CatalogManager.$anonfun$catalog$1(CatalogManager.scala:53)
    at scala.collection.mutable.HashMap.getOrElseUpdate(HashMap.scala:86)
    at org.apache.spark.sql.connector.catalog.CatalogManager.catalog(CatalogManager.scala:53)
    at org.apache.spark.sql.connector.catalog.LookupCatalog$CatalogAndIdentifier$.unapply(LookupCatalog.scala:122)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.$anonfun$lookupRelation$1(Analyzer.scala:1198)
    at scala.Option.orElse(Option.scala:447)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupRelation(Analyzer.scala:1197)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$13.applyOrElse(Analyzer.scala:1068)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$13.applyOrElse(Analyzer.scala:1032)
    at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$3(AnalysisHelper.scala:138)
    at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:177)
    at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$1(AnalysisHelper.scala:138)
    at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:323)
    at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning(AnalysisHelper.scala:134)
    at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning$(AnalysisHelper.scala:130)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUpWithPruning(LogicalPlan.scala:30)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:1032)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:991)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:215)
    at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126)
    at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122)
    at scala.collection.immutable.List.foldLeft(List.scala:91)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeBatch$1(RuleExecutor.scala:212)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$6(RuleExecutor.scala:284)
    at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor$RuleExecutionContext$.withContext(RuleExecutor.scala:327)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$5(RuleExecutor.scala:284)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$5$adapted(RuleExecutor.scala:274)
    at scala.collection.immutable.List.foreach(List.scala:431)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:274)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:188)
    at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:227)
    at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$execute$1(Analyzer.scala:223)
    at org.apache.spark.sql.catalyst.analysis.AnalysisContext$.withNewAnalysisContext(Analyzer.scala:172)
    at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:223)
    at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:187)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:179)
    at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:107)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:179)
    at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:208)
    at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:330)
    at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:207)
    at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:78)
    at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:192)
    at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:213)
    at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:552)
    at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:213)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
    at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:212)
    at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:78)
    at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:76)
    at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:68)
    at org.apache.spark.sql.Dataset$.$anonfun$ofRows$1(Dataset.scala:93)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
    at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:91)
    at org.apache.spark.sql.DataFrameReader.table(DataFrameReader.scala:607)
    at org.apache.spark.sql.SparkSession.table(SparkSession.scala:600)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
    at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
    at java.lang.Thread.run(Thread.java:750)
Caused by: java.lang.ClassNotFoundException: com.github.benmanes.caffeine.cache.RemovalListener
    at java.net.URLClassLoader.findClass(URLClassLoader.java:387)
    at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
    at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:352)
    at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
    ... 71 more
py4j.protocol.Py4JJavaError: An error occurred while calling o123.getDataFrame.
: java.lang.NoClassDefFoundError: com/github/benmanes/caffeine/cache/Caffeine
    at org.apache.iceberg.hive.CachedClientPool.init(CachedClientPool.java:67)
    at org.apache.iceberg.hive.CachedClientPool.<init>(CachedClientPool.java:56)
    at org.apache.iceberg.hive.HiveCatalog.initialize(HiveCatalog.java:110)
    at org.apache.iceberg.CatalogUtil.loadCatalog(CatalogUtil.java:239)
    at org.apache.iceberg.CatalogUtil.buildIcebergCatalog(CatalogUtil.java:284)
    at org.apache.iceberg.spark.SparkCatalog.buildIcebergCatalog(SparkCatalog.java:135)
    at org.apache.iceberg.spark.SparkCatalog.initialize(SparkCatalog.java:537)
    at org.apache.spark.sql.connector.catalog.Catalogs$.load(Catalogs.scala:60)
    at org.apache.spark.sql.connector.catalog.CatalogManager.$anonfun$catalog$1(CatalogManager.scala:53)
    at scala.collection.mutable.HashMap.getOrElseUpdate(HashMap.scala:86)
    at org.apache.spark.sql.connector.catalog.CatalogManager.catalog(CatalogManager.scala:53)
    at org.apache.iceberg.spark.source.IcebergSource.catalogAndIdentifier(IcebergSource.java:168)
    at org.apache.iceberg.spark.source.IcebergSource.extractIdentifier(IcebergSource.java:203)
    at org.apache.spark.sql.execution.datasources.v2.DataSourceV2Utils$.loadV2Source(DataSourceV2Utils.scala:117)
    at org.apache.spark.sql.DataFrameReader.$anonfun$load$1(DataFrameReader.scala:209)
    at scala.Option.flatMap(Option.scala:271)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:207)
    at com.amazonaws.services.glue.SparkSQLDataSource.getDataFrameFromSparkReader(DataSource.scala:963)
    at com.amazonaws.services.glue.SparkSQLDataSource.$anonfun$getDataFrame$1(DataSource.scala:942)
    at com.amazonaws.services.glue.util.FileSchemeWrapper.$anonfun$executeWithQualifiedScheme$1(FileSchemeWrapper.scala:90)
    at com.amazonaws.services.glue.util.FileSchemeWrapper.executeWith(FileSchemeWrapper.scala:83)
    at com.amazonaws.services.glue.util.FileSchemeWrapper.executeWithQualifiedScheme(FileSchemeWrapper.scala:90)
    at com.amazonaws.services.glue.SparkSQLDataSource.getDataFrame(DataSource.scala:892)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
    at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
    at java.lang.Thread.run(Thread.java:750)
Caused by: java.lang.ClassNotFoundException: com.github.benmanes.caffeine.cache.Caffeine
    at java.net.URLClassLoader.findClass(URLClassLoader.java:387)
    at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
    at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:352)
    at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
    ... 35 more

I used spark.sql("catalog.table_name") to read iceberg table. glueContext.create_data_frame.from_catalog(...) will also get the same error.

namtvd
  • 1
  • 1

0 Answers0