For the first one, there's an easy 4-state DFA you can construct to recognize the language. Then, you can use the algorithm recoverable from Kleene's theorem (the part where he says all languages recognized by a FA are generated by a RE) to get an RE that works... or just reason it out from the diagram.
For the second one, you know that (ab) is part of the RE; now, you need to think of all the unique ways you could add an odd number of characters to this (front or back), and connect all those possibilities with + for an easy, correct RE.
I don't think anybody particularly likes the idea of just giving you the answer.
EDIT:
So now that some time has passed, I'll work through the answer to the first one to show interested readers how it can be done.
Our first FA is this:
Q s f(Q, s)
-- - -------
EE a OE
EE b EO
OE a EE
OE b OO
EO a OO
EO b EE
OO a EO
OO b OE
We will remove states from this and replace s with a regular expression to cover that state. We start with an easy one... let's get rid of OE. Here's the table for that...
Q regex f(Q, s)
-- ---------------------- -------
EE aa EE
EE ab OO
EE b EO
EO a OO
EO b EE
OO a EO
OO ba EE
OO bb OO
Convince yourself this is correct before continuing. Next, we get rid of EO:
Q regex f(Q, s)
-- ---------------------- -------
EE aa+bb EE
EE ab+ba OO
OO ab+ba EE
OO aa+bb OO
To make the next step simpler, we introduce a new start set X and a new accepting state Y; OO is no longer accepting. We eliminate the need for OO:
Q regex f(Q, s)
-- ---------------------------- -------
X empty EE
EE aa+bb+(ab+ba)(aa+bb)*(ab+ba) EE
EE (ab+ba)(aa+bb)* Y
Therefore, the final regex is
(aa+bb+(ab+ba)(aa+bb)*(ab+ba))*(ab+ba)(aa+bb)*
We can begin trying to list the smallest strings this generates, just as a basic sanity check: {ab, ba, aaab, aaba, bbab, bbba, abaa, abbb, baaa, babb, ...} Looks good to me!
The rules for reducing at each step can be formalized, or you can just apply careful reasoning to ensure that you're getting the right thing. Check a proof of Kleene's theorem for a careful analysis. Also, Martin's Introduction to Formal Languages or something has good examples of using this algorithm.