I have been trying to find some documentation about chaning the actual languages (like France or German) of the LMM output by langchain framework when i use a local file as a knowlegde for my LMM.
Here is the full code:
from PyPDF2 import PdfReader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate, FAISS
from langchain.llms import OpenAI
from langchain import OpenAI, ConversationChain, LLMChain, PromptTemplate
from langchain.memory import ConversationBufferWindowMemory
# Get your API keys from openai, you will need to create an account.
# Here is the link to get the keys: https://platform.openai.com/account/billing/overview
import os
os.environ["OPENAI_API_KEY"] = "i have enter my own API-key here"
# location of the pdf file/files.
reader = PdfReader(r'C:\Users\admin\Downloads\2023_GPT4All_Technical_Report.pdf')
# read data from the file and put them into a variable called raw_text
raw_text = ''
for i, page in enumerate(reader.pages):
text = page.extract_text()
if text:
raw_text += text
# We need to split the text that we read into smaller chunks so that during information retreival we don't hit the token size limits.
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 1000,
chunk_overlap = 200,
length_function = len,
)
texts = text_splitter.split_text(raw_text)
# Download embeddings from OpenAI
embeddings = OpenAIEmbeddings()
docsearch = FAISS.from_texts(texts, embeddings)
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
chain = load_qa_chain(OpenAI(), chain_type="stuff")
query = input("ask a question \n")
docs = docsearch.similarity_search(query)
print(chain.run(input_documents=docs, question=query))
I have tried to change the code by using a agent from Langchain, but i could not get it to work
New codei have tried:
from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chat = ChatOpenAI(temperature=0)
# get a chat completion from the formatted messages
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
chain = LLMChain(llm=chat, prompt=chat_prompt)