1

I'm trying to understand if there is a statistical difference between Policy support scores (PS_score) and Income. I have never done one before so I'm hoping someone can see if I have done it correctly?

Also, if there is anything else I should do to present the findings ie. plots etc I would appreciate the advice! :)

Many thanks

This is the data set:

   PS_score EC_score Age Income Own_bags
1          4        4   2      1        1
2          3        4   2      3        1
3          4        4   2      2        1
4          4        4   1      3        2
5          3        4   2      3        1
6          3        3   1      1        2
7          2        2   1      1        2
8          3        4   1      3        2
9          5        2   1      3        1
10         3        5   1      1        1
11         2        2   2      3        2
12         5        4   1      1        2
13         2        3   1      1        1
14         5        1   2      2        3
15         4        4   1      2        1
16         4        3   1      1        1
17         3        4   2      2        1
18         4        4   2     NA        1
19         4        3   1      1        2
20         2        4   1      3        1
21         2        3   1      2        1
22         4        4   1      1        2
23         5        4   1      1        1
24         3        4   2      3        2
25         4        5   1      1        1
26         4        4   1      1        1
27         2        2   1      2        2
28         3        3   1      1        1
29         4        4   1      2        1
30         4        4   1      3        1
31         2        4   1      2        2
32         4        3   1      3        3
33         3        4   1      2        2
34         4        4   1      1        2
35         4        4   2      2        1
36         4        4   1      1        2
37         4        5   1      1        1
38         4        5   1      2        2
39         3        3   1      1        1
40         2        4   1      1        1
41         4        4   2      2        2
42         4        3   2      2        1
43         4        4   1      2        2
44         2        2   1      1        1
45         4        4   1      1        2
46         5        3   1      1        2
47         4        4   1      2        1
48         4        3   2      2        1
49         2        5   2     NA        1
50         4        4   1      3        2
51         5        4   2      2        2
52         4        5   2      3        2
53         4        4   1      1        2
54         4        4   1      1        1
55         4        4   1      1        2
56         5        4   1      1        1
57         3        3   1      2        2
58         4        4   1      2        1
59         4        4   1      1        1
60         4        3   1      1        1
61         4        3   1      2        2
62         4        2   1      2        2
63         4        4   1      1        2
64         4        4   1      2        1
65         4        3   1      2        2
66         4        3   1      1        2
67         3        4   1      1        1
68         4        3   2      2        2
69         5        3   1      1        1
70         3        4   2     NA        1
71         4        4   1      1        1
72         4        5   1      3        1
73         5        4   2      3        2
74         4        4   1      3        1
75         4        3   1      1        2
76         4        3   2     NA        1
77         4        2   2      1        3
78         4        3   1      2        2
79         3        3   2      1        1
80         4        4   2     NA        2
81         4        4   2      1        1
82         2        3   2      1        2
83         4        4  NA     NA        1
84         3        4   2     NA        1
85         4        4   2      3        1
86         4        4   2      2        1
87         5        4   2      2        1
88         4        4   2      2        1
89         4        4   2      1        1
90         5        3   2     NA        1
91         4        4   2      2        1
92         3        3   2     NA        1
93         4        4   2      3        2
94         4        4   2      3        2
95         4        3   2      2        2
96         3        3   2      3        1
97         3        4   1      1        2
98         5        4   2     NA        1
99         4        4   2      3        1
100        4        5   2      2        1
101        4        4   2      2        1
102        3        3   2      1        1
103        2        3   2      2        1
104        5        5   2      2        1
105        4        4   2      2        1
106        4        4   2      2        1
107        4        3   2      1        2
108        4        3   2      3        2
109        3        3   2      1        2
110        4        3   2      2        1
111        4        4   2      3        3
112        4        4   2      2        1
113        3        1   2      2        1
114        3        2   1      1        2
115        5        4   2     NA        1
116        5        4   1      2        1
117        4        3   2     NA        2
118        4        4   2      2        1
119        4        3   2      2        1
120        4        4   2      2        1
121        4        3   2      1        1
122        2        3   2      1        3
123        3        4   2      2        1
124        3        3   2     NA        1
125        3        3   2      2        1
126        4        3   2      1        1
127        4        4   2      2        1
128        4        4   2     NA        1
129        4        4   2      2        1
130        3        4   2      2        1
131        3        4   2     NA        1
132        3        4   2     NA        1
133        3        3   2      2        2
134        5        4   2      2        1
135        4        4   2      3        2
136        4        2   2      3        3
137        4        4   2      2        1
138        3        4   2      1        1
139        4        3   2     NA        1
140        3        2   2      2        3
141        5        3   2      3        1
142        4        4   1      1        1
143        5        4   2      3        2
144        3        3   2      2        2
145        4        5   2      2        1
146        3        4   2      3        1
147        5        2   2     NA        1
148        4        5   2      3        1
149        4        4   2      3        1
150        3        3   1      2        2
151        4        4   1      2        1
152        4        4   2      2        1
153        4        3   2     NA        1
154        3        5   2     NA        1
155        4        4   2      2        2
156        4        3   2      3        1
157        4        4   2      1        1
158        5        3   2      2        1
159        5        4   1      2        2
160        4        4   1      2        2
161        4        4   2      1        1
162        3        2   2      1        1
163        5        4   2     NA        1
164        4        3   2      1        1
165        4        4   2      2        2

This is what I did & the results:

kruskal.test(PS_score ~ Income, data = survey)

    Kruskal-Wallis rank sum test

data:  PS_score by Income
Kruskal-Wallis chi-squared =
1.7261, df = 2, p-value = 0.4219
Phil
  • 7,287
  • 3
  • 36
  • 66
  • I see no issue. The test indicates that the difference is not statistically significant. You could run a box plot across the 3 income categories on ps_score to observe the data distribution. – Phil Apr 16 '23 at 15:30

0 Answers0