We are running terraform through an Azure pipeline to create a databricks workspace and related resources, however when the apply stage of Terraform gets to the stage where it is grabbing the latest version of spark, the process throws an error.
Error is:
│ Error: default auth: cannot configure default credentials. Config: profile=DEFAULT, azure_client_secret=***, azure_client_id=***, azure_tenant_id=*****-*****. Env: ARM_CLIENT_SECRET, ARM_CLIENT_ID, ARM_TENANT_ID
│
│ with data.databricks_spark_version.latest_lts,
│ on databricks.tf line 33, in data "databricks_spark_version" "latest_lts":
│ 33: data "databricks_spark_version" "latest_lts" {
│
We are using a service principal which has been created in Azure AD and has been given the account admin role in our databricks account
we've declared the databricks_connection_profile in a variables file:
databricks_connection_profile = "DEFAULT"
The part that appears to be at fault is the databricks_spark_version towards the bottom of this:
resource "azurerm_databricks_workspace" "dbw-uks" {
name = "dbw-uks"
resource_group_name = azurerm_resource_group.rg-dataanalytics-uks-0002.name
location = azurerm_resource_group.rg-dataanalytics-uks-0002.location
sku = "standard"
depends_on = [
azuread_service_principal.Databricks
]
tags = "${merge( local.common_tags, local.extra_tags)}"
}
output "databricks_host" {
value = "https://${azurerm_databricks_workspace.dbw-uks.workspace_url}/"
}
# #--------------- dbr-dataanalytics-uks-0002 Cluster ---------------#
data "databricks_node_type" "smallest" {
local_disk = true
depends_on = [
azurerm_databricks_workspace.dbw-uks
]
}
data "databricks_spark_version" "latest_lts" {
long_term_support = true
depends_on = [
azurerm_databricks_workspace.dbw-uks
]
}
We've followed through various tutorials from both Microsoft and Hashicorp but no positive results so far.