0

my dataset test is 0 17565 1 2435 train is 0 70212 1 9788 I applied oversampling Smote with IsolationForest algorithm on just training set before oversampling results: F1 Score : 0.9278732648748262 Accuracy Score : 0.93025 Classification Report : precision recall f1-score support

       0       0.95      0.97      0.96     17648
       1       0.74      0.63      0.68      2352

after oversampling results: F1 Score : 0.8172379348236138 Accuracy Score : 0.83115 Classification Report : precision recall f1-score support

       0       0.89      0.93      0.91     17648
       1       0.18      0.13      0.15      2352

my code is:

clf=IsolationForest(n_estimators=50, max_samples='auto', 
contamination=float(0.1),max_features=1.0)
clf.fit(X_train)
y_pred = clf.predict(X_test)
y_pred[y_pred == 1] = 0
y_pred[y_pred == -1] = 1

These results are normal? Because ı think after oversampling resuts must be improved. Could you help me? Best regards.

David
  • 21
  • 2

0 Answers0