I'll provide this answer until someone comes up with something more elegant.
library(tidyverse)
dat <- structure(list(date1 = structure(c(19370, 19373, 19374, 19375,
19376), class = "Date"), Var1 = c(100.1, 104.5, 101.6, 101.8,
NA), date2 = structure(c(19368, 19369, 19370, 19373, 19374
), class = "Date"), Var2 = c(99.7, 99.8, 99.9, NA, NA), date3 = structure(c(19320,
19321, 19324, 19325, 19326), class = "Date"), Var3 = c(102.3,
99.9, 99.3, 100.5, 100.1)), row.names = c(NA, -5L), class = c("tbl_df",
"tbl", "data.frame"))
dat2 <- dat %>%
pivot_longer(cols = contains("date"),
names_to = "date") %>%
select(date, value, contains("Var")) %>%
arrange(date) %>%
mutate(id = group_indices(group_by(., date))) %>%
select(contains("Var"), date = value, id)
var_nms <- names(select(dat2, contains("Var")))
for (i in seq_along(var_nms)){
dat2[[var_nms[i]]] <- if_else(dat2$id == i, dat2[[var_nms[i]]],
NA_real_)
}
out <- dat2 %>%
mutate(Var = do.call(coalesce, pick(contains("Var")))) %>%
select(date, Var)
out
#> # A tibble: 15 x 2
#> date Var
#> <date> <dbl>
#> 1 2023-01-13 100.
#> 2 2023-01-16 104.
#> 3 2023-01-17 102.
#> 4 2023-01-18 102.
#> 5 2023-01-19 NA
#> 6 2023-01-11 99.7
#> 7 2023-01-12 99.8
#> 8 2023-01-13 99.9
#> 9 2023-01-16 NA
#> 10 2023-01-17 NA
#> 11 2022-11-24 102.
#> 12 2022-11-25 99.9
#> 13 2022-11-28 99.3
#> 14 2022-11-29 100.
#> 15 2022-11-30 100.
Created on 2023-04-12 with reprex v2.0.2