0

I would like to reproduce a federated code with PySyft with image dataset (224,224,3) So here is my code

hook = sy.TorchHook(torch) 
bob = sy.VirtualWorker(hook, id="bob") 
alice = sy.VirtualWorker(hook, id="alice") 
class Arguments():
    def __init__(self):
        self.batch_size = 2
        self.test_batch_size = 2
        self.epochs = 100
        self.lr = 0.001
        self.momentum = 0.5
        self.no_cuda = False
        self.seed = 1
        self.log_interval = 10
        self.save_model = False

args = Arguments()
transform = transforms.Compose([
    transforms.Resize(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

training_dataset = datasets.ImageFolder(path,transform=transform)
train_set = torch.utils.data.DataLoader(training_dataset, batch_size=2, shuffle=True)

test_dataset = datasets.ImageFolder(path2,transform=transform)
test_loader = torch.utils.data.DataLoader(training_dataset, batch_size=2, shuffle=True)

dataiter = iter(train_set)
images, labels = next(dataiter)
base=sy.BaseDataset(images,labels)
base_federated=base.federate((bob, alice))
federated_train_loader = sy.FederatedDataLoader(base_federated,batch_size=args.batch_size)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
     
        self.model = models.resnet50(pretrained=True)
        self.fc1 = nn.Linear(2048,2048)
        self.fc2 = nn.Linear(2048, 3)
        self.dropout = nn.Dropout(0.3)

    def forward(self, x):

        x = torch.nn.functional.relu(self.model.conv1(x))
        print('model_shape:',x.shape)
        x = x.view(-1,2048*1*1)
        x = torch.nn.functional.relu(self.fc1(x))     
        x = F.log_softmax(self.fc2(x), dim=1)

        return x
def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(federated_train_loader):
        model.send(data.location)
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        print('x_shape:',data.shape)
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        model.get() 
        if batch_idx % args.log_interval == 0:
            loss = loss.get() 
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * args.batch_size, len(train_loader) * args.batch_size, #batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item() 
            pred = output.argmax(1, keepdim=True) 
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr) # TODO momentum is not supported at the moment

for epoch in range(1, args.epochs + 1):
    train(args, model, device, federated_train_loader, optimizer, epoch)
    test(args, model, device, test_loader)

I don't understand if it is a conflict between data shape and model shape so when I print model.shape, I find : torch.Size([1, 64, 112, 112]) and when I print data.shape, I find : torch.Size([1, 3, 224, 224]) Also I don't understand why 1 instead of 2 which is batch_size

seni
  • 659
  • 1
  • 8
  • 20

0 Answers0