I am trying to train a model to predict from images 21 different categories. The proposed model is as follows:
model = Sequential()
model.add(Resizing(32,32, input_shape=img_size))
model.add(Rescaling(1./255))
model.add(Flatten())
model.add(Dense(units=1024, activation="relu",
kernel_initializer="random_normal",
bias_initializer="zeros"))
model.add(Dropout(rate=.5))
model.add(Dense(units=21, activation="softmax"))
model.compile(optimizer=Adam(learning_rate=l_rate),
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
call = EarlyStopping(monitor='val_loss',
patience=10,
verbose=1,
restore_best_weights='True',
min_delta=0.1,
mode="min")
history = model.fit(train_data, validation_data = val_data, epochs=100,
callbacks=[call])
However, when I train the model it reaches the callback but it does not stop the training as you can see here
Any ideas why this happens?