0
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.utils.data import DataLoader, Dataset,TensorDataset
    from torchvision.transforms import ToTensor







    # 定义欺诈检测模型
    class MLP(nn.Module):
        def __init__(self):
            super(MLP, self).__init__()
            self.fc1 = nn.Linear(29, 64)
            self.fc2 = nn.Linear(64, 32)
            self.fc3 = nn.Linear(32, 2)

        def forward(self, x):
            x = torch.relu(self.fc1(x))
            x = torch.relu(self.fc2(x))
            x = self.fc3(x)
            return x


    # 定义元学习模型
    class MAML(nn.Module):
        def __init__(self, model):
            super(MAML, self).__init__()
            self.model = model
            self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)

        def forward(self, x):
            return self.model(x)

        def meta_update(self, support_data, support_labels, query_data, query_labels, num_updates=1):
            # 复制模型的初始参数
            fast_weights = [p.clone().detach() for p in self.model.parameters()]
            for i in range(num_updates):
                # 在支持集上计算梯度并更新参数
                support_preds = self.model(support_data, fast_weights)
                support_loss = nn.functional.cross_entropy(support_preds, support_labels)
                grad = torch.autograd.grad(support_loss, fast_weights)
                fast_weights = [w - 0.01 * g for w, g in zip(fast_weights, grad)]

            # 在查询集上计算损失
            query_preds = self.model(query_data, fast_weights)
            query_loss = nn.functional.cross_entropy(query_preds, query_labels)

            # 执行元学习更新
            self.optimizer.zero_grad()
            query_loss.backward()
            self.optimizer.step()
            return query_loss.item()


    # 训练循环
    def train(model, maml, train_loader, num_epochs=10, num_updates=5):
        model.train()
        for epoch in range(num_epochs):
            epoch_loss = 0
            for i, (x, y) in enumerate(train_loader):
                # 元学习模型更新
                support_data, support_labels = x[:, :20], y[:20]
                query_data, query_labels = x[:, 20:], y[20:]
                loss = maml.meta_update(support_data, support_labels, query_data, query_labels, num_updates=num_updates)
                epoch_loss += loss
            print(f'Epoch {epoch+1}, loss={epoch_loss:.4f}')

    # 测试循环
    def test(model, test_loader):
        model.eval()
        correct = 0
        total = 0
        with torch.no_grad():
            for x, y in test_loader:
                preds = model(x)
                predicted = torch.argmax(preds, dim=1)
                total += y.size(0)
                correct += (predicted == y).sum().item()
        accuracy = 100 * correct / total
        print(f'Test accuracy: {accuracy:.2f}%')


    # 生成随机的训练集和测试集
    def generate_data(num_train=1000, num_test=200):
        # 特征数和类别数
        num_features = 30
        num_classes = 2

        # 生成训练集和测试集特征
        train_features = np.random.randn(num_train, num_features)
        test_features = np.random.randn(num_test, num_features)

        # 生成训练集和测试集标签
        train_labels = np.random.randint(num_classes, size=num_train)
        test_labels = np.random.randint(num_classes, size=num_test)

        # 对标签进行欺诈样本的设置
        fraud_index = np.random.choice(num_train, int(0.1*num_train), replace=False)
        train_labels[fraud_index] = 1

        return train_features, train_labels, test_features, test_labels


    # 生成数据
    train_features, train_labels, test_features, test_labels = generate_data()


    # 转换数据为tensor并加载到DataLoader中
    train_dataset = TensorDataset(torch.tensor(train_features, dtype=torch.float32),   torch.tensor(train_labels, dtype=torch.long))
    train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

    test_dataset = TensorDataset(torch.tensor(test_features, dtype=torch.float32),       torch.tensor(test_labels, dtype=torch.long))
    test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)

    # 初始化模型和元学习模型
    model = MLP()
    maml = MAML(model)

    # 训练模型
    train(model, maml, train_loader)

    # 测试模型
    test(model, test_loader)

File D:\Python3.10\lib\site-packages\torch\nn\modules\module.py:1501, in Module._call_impl(self, *args, **kwargs) 1496 # If we don't have any hooks, we want to skip the rest of the logic in 1497 # this function, and just call forward. 1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1499 or _global_backward_pre_hooks or _global_backward_hooks 1500 or _global_forward_hooks or _global_forward_pre_hooks): -> 1501 return forward_call(*args, **kwargs) 1502 # Do not call functions when jit is used 1503 full_backward_hooks, non_full_backward_hooks = [], []

TypeError: MLP.forward() takes 2 positional arguments but 3 were given

0 Answers0