I am using spatstat version 3.0.2 to explore settlement patterns in archaeological data in five different periods throughout prehistory. I have formulated several point process models with different covariates including elevation, slope, etc.
In terms of model formalisation, each environmental variable was examined on its own to delineate its relationship with archaeological sites during each chronological phase. Several point process models were created (as realisations of the Nonstationary Poisson Process). Subsequently, a model including all the environmental variables was formulated for each period. Finally, a Gibbs model including both environmental variables and the social interaction between sites was created.
All of the created models were compared per chronological period. AIC was used to measure the models’ quality, not in terms of the goodness of fit, but rather in terms of how well they act as approximations of the processes that generated the observed point patterns. This was done to compare competing hypotheses regarding site location, reaching a “best model” for each chronological period-that is a model that could best predict the observed point pattern given a trade-off between the complexity of the data and the model’s fit.
My question has to do with the use of AIC, which in my case is used to rank Poisson and Gibbs point process models. Is it reasonable to use a likelihood-based statistic like AIC to compare point process models that are based on different likelihood functions (Poisson and Gibbs in this case)? Any insights would be very much appreciated.