I tryed to convert this Mathcad code into the SciPy Python.
My code in Python:
from scipy.optimize import minimize
from scipy.optimize import LinearConstraint
import numpy as np
A=[[1,1,0,1],[-1,-1,1,0],[0,0,-1,-1]]
V=[[1000, 1000], [0, 0],[-1000, -1000]]
linear_constraint = LinearConstraint (A, V[0],V[1],V[2])
x0 = np.array([0.1,0.1,0.1,0.1])
f = [5*10**-9,2*10**-9,6*10**-8,2*10**-8]
def func(x):
sum=0
for i in range(len(f)):
sum += f[i]*x[i]**3
return sum
res = minimize(func, x0,method='SLSQP',constraints=[linear_constraint] )
print(res.x)
Result: ValueError: keep_feasible
has a wrong shape.
What i did wrong?