I don't know how interpretation charts from training network in Machine Learning. I don't understand why val_accuracy is divergent compering to accuracy and the same problem in second chart (loss vs val_loss). Please help me. Thanks
I try training in difference optimizer (RMSprop, AdaMax, AdaDelta).
model = Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(units=512, activation='relu'))
model.add(layers.Dense(units=512, activation='relu'))
model.add(layers.Dense(units=3, activation='softmax'))
model.compile(optimizer=optimizers.RMSprop(learning_rate=0.000001),
loss='categorical_crossentropy',
metrics=['accuracy'])
model.summary()
from panel.io import callbacks
callback_list = EarlyStopping(monitor='accuracy', mode='max', patience=7)
history = model.fit_generator(generator=train_generator,
steps_per_epoch=steps_per_epoch,
epochs=40, # 100
validation_data=valid_generator,
validation_steps=validations_steps, callbacks = [callback_list])