I'm using Yolov8 to perform image segmentation, and I want to retrain the network with images predicted by the network itself, but making corrections to the masks. That is, to make these corrections, I would like to know if there is any program that converts the labels generated by Yolo, in the prediction, to Labelme, for example. I know that labelme2yolo exists, but I would like the inverse conversion (yolo2labelme).
I found this code but I don't know if it works.
if __name__ == "__main__":
#parameters
paser = argparse.ArgumentParser()
args = paser.parse_args("")
##### set params #####
#input : yolo image, label path
args.yolo_images_path = './yolo_data/images/'
args.yolo_labels = './yolo_data/labels/'
#class count
args.yolo_nc = 80
#class names
args.yolo_names = ['aeroplane', 'apple', 'backpack', ...]
#output : labelme output path
args.labelme_path = './output_yolo2labelme/'
args.labelme_save_image = True #False #create jpg images in output path
#######################
#######################
#start processing
yolo2labelme_main(args)
#######################