I am currently doing a regression using mlr3 lrn('regr.cv_glmnet'). I am doing a benchmark grid to determine whether linear regression vs cross validated lasso works better. By using default values with regr.cv_glmnet, the lasso works better, but I can't seem to figure out how to get the lambda value that was selected.
lm_learner <- lrn('regr.lm')
lasso_learner <- lrn('regr.cv_glmnet')
lasso_learner$param_set$values <- list(alpha=1, nfolds=10)
lasso_gr <- po('encode') %>>% po('scale') %>>% po(lasso_learner)
lasso_glrn <- GraphLearner$new(lasso_gr)
benchmark_grid(tasks=task, learners=c(lm_learner, lasso_glrn), resamplings=resampling)
How do I get the lambda.min value?