3

I have a DataFrame like so:

| Date       | Group | Value |
|------------|-------|-------|
| 2020-01-01 | 0     | 5     |
| 2020-01-02 | 0     | 8     |
| 2020-01-03 | 0     | 9     |
| 2020-01-01 | 1     | 5     |
| 2020-01-02 | 1     | -1    |
| 2020-01-03 | 1     | 2     |
| 2020-01-01 | 2     | -2    |
| 2020-01-02 | 2     | -1    |
| 2020-01-03 | 2     | 7     |

I want to do a cumulative sum grouped by "Date" in the order of the "Group" consecutively, something like:

| Date       | Group | Value            |
|------------|-------|------------------|
| 2020-01-01 | 0     | 5                |
| 2020-01-02 | 0     | 8                |
| 2020-01-03 | 0     | 9                |
| 2020-01-01 | 1     | 10 (= 5 + 5)     |
| 2020-01-02 | 1     | 7  (= 8 - 1)     |
| 2020-01-03 | 1     | 11 (= 9 + 2)     |
| 2020-01-01 | 2     | 8  (= 5 + 5 - 2) |
| 2020-01-02 | 2     | 6  (= 8 - 1 - 1) |
| 2020-01-03 | 2     | 18 (= 9 + 2 + 7) |

The explanation for these values is as follows. Group 0 precedes group 1 and group 1 precedes group 2. For the values of group 0, we need not do anything, cumulative sum up to this group are just the original values. For the values of group 1, we accumulate the values of group 0 for each date. Similarly, for group 2, we accumulate the values of group 1 and group 0.

What I have tried is to do this via a helper pivot table. I do it iteratively by looping over the Groups and doing a cumulative sum over a partial selection of the columns and adding that into a list of new values. Then, I replace these new values with into a column into the original DF.

from io import StringIO

import polars as pl


df = pl.read_csv(StringIO("""
Date,Group,Value
2020-01-01,0,5
2020-01-02,0,8
2020-01-03,0,9
2020-01-01,1,5
2020-01-02,1,-1
2020-01-03,1,2
2020-01-01,2,-2
2020-01-02,2,-1
2020-01-03,2,7
"""), parse_dates=True)

ddf = df.pivot('Value', 'Date', 'Group')

new_vals = []
for i in range(df['Group'].max() + 1):
    new_vals.extend(
        ddf.select([pl.col(f'{j}') for j in range(i+1)])
           .sum(axis=1)
           .to_list()
    )

df.with_column(pl.Series(new_vals).alias('CumSumValue'))

Is there a way to do this without loops or all this "inelegance"?

1 Answers1

2

So assuming that the columns are ordered, you can just create an index over the groups and then cumsum over date and index

df = df.with_columns(pl.col("Date").cumcount().over("Group").alias("Index"))
    
df.select((
    pl.col(["Date", "Group"]),
    pl.col("Value").cumsum().over(["Date", "Index"]).alias("Value"),
))
shape: (9, 3)
┌────────────┬───────┬───────┐
│ Date       ┆ Group ┆ Value │
│ ---        ┆ ---   ┆ ---   │
│ date       ┆ i64   ┆ i64   │
╞════════════╪═══════╪═══════╡
│ 2020-01-01 ┆ 0     ┆ 5     │
│ 2020-01-02 ┆ 0     ┆ 8     │
│ 2020-01-03 ┆ 0     ┆ 9     │
│ 2020-01-01 ┆ 1     ┆ 10    │
│ ...        ┆ ...   ┆ ...   │
│ 2020-01-03 ┆ 1     ┆ 11    │
│ 2020-01-01 ┆ 2     ┆ 8     │
│ 2020-01-02 ┆ 2     ┆ 6     │
│ 2020-01-03 ┆ 2     ┆ 18    │
└────────────┴───────┴───────┘
alexp
  • 697
  • 4
  • 9
  • Perfect! Just a slight fix: parens around the `pl.col`s and you're good. Also, what's with polar's dataframe render? I have exactly 9 rows and it chose to obscure the middle row as if it's holding more than 9 rows of data. Could be a good bug to put on their GH – Syafiq Kamarul Azman Mar 07 '23 at 07:39
  • I wouldn't call it a bug. I think it is just hard coded to switch to this visualization if the datatframe has more than 8 rows (I didn't look into the source code :) ) and 9 row dataframe seems to be a special case. But I am sure you can create an enhancement request on their GH to see what they think about it. – alexp Mar 07 '23 at 08:02
  • 2
    @SyafiqKamarulAzman `8` is the default number of rows to display. You could [modify your `pl.Config`](https://pola-rs.github.io/polars/py-polars/html/reference/api/polars.Config.set_tbl_rows.html) - there are also a few open issues about this topic. e.g. for columns: https://github.com/pola-rs/polars/issues/7282 – jqurious Mar 07 '23 at 08:25
  • Is there a difference compared to using just the `Date` in the `over` expression? `df.with_columns(pl.col("Value").cumsum().over("Date"))` – jqurious Mar 07 '23 at 08:38
  • @jqurious true... At my first read I thought the position was important, but to be honest your line could be enough – alexp Mar 07 '23 at 09:01