I have a cox model with variables of age, living environment, Rankin, side of stroke, and systolic blood pressure. Summary of model is:
coef exp(coef) se(coef) z p
age 0.061691 1.063634 0.009349 6.598 4.16e-11
preliv1 0.818710 2.267573 0.316903 2.583 0.00978
prerank1 0.944284 2.570972 0.214455 4.403 1.07e-05
prerank2 2.586012 13.276721 1.082256 2.389 0.01687
side1 4.076834 58.958496 0.776908 5.248 1.54e-07
poly(bpsysadm, 2)1 -3.063463 0.046726 1.458950 -2.100 0.03575
poly(bpsysadm, 2)2 1.876006 6.527384 1.502533 1.249 0.21183
When I predict from this using the predict function on the following data:
age = 77
preliv = 0
prerank = 0
side = 0
bpsysadm = 121
I get 0.6124938, when I calculate manually I get 27666.62, which is obviously because of the bpsysadm^2.
(0.0609)*(77) + (0.863)*(0) + (0.876)*(0) + (2.435)*(0) + (4.048)*(0) + (-3.104)*(121) + 1.915)*(121)^2
how am I going so wrong here?