log_fc
primer ID_1 category Avg_logfc
primer_1 42 test_1 1.88444044
primer_2 43 test_1 0.8730141
primer_3 44 test_1 1.10542821
primer_4 45 test_1 0.79234524
primer_1 11 test_2 0.33098178
primer_2 12 test_2 0.66117247
primer_3 13 test_2 0.62520437
primer_4 14 test_2 0.21972443
primer_1 94 test_3 -0.96924447
primer_2 95 test_3 1.4806643
primer_3 96 test_3 1.83216384
primer_4 97 test_3 1.93774891
I have a data (log_fc)
and I am trying to do Kruskal Wallis test based on each category. I am getting the same test statistic output for all data frames. I have four primers (primer1, primer2, primer3, primer4) in each experiment and I want to test the distribution of log_fc
values for these primers in each category
.
The code I tried
for g, group in log_fc.groupby("category"):
logfc_matrix = group[["ID_1", "Avg_logfc", "category"]]
d = logfc_matrix[['Avg_logfc']]
# Primer 1
f1 = d.iloc[0].values
# Primer 2
f2 = d.iloc[1].values
# Primer 3
f3 = d.iloc[2].values
# Primer 4
f4 = d.iloc[3].values
kw_test_results = ss.kruskal(f1, f2, f3, f4)
print(kw_test_results)
I got same test output for all 3 categories, when the distribution of the log_fc values are different in each category.
KruskalResult(statistic=3.0, pvalue=0.3916251762710877)
KruskalResult(statistic=3.0, pvalue=0.3916251762710877)
KruskalResult(statistic=3.0, pvalue=0.3916251762710877)