# -*- coding: utf-8 -*-
"""
Created on Thu Feb 16 18:17:32 2023
@author: avnth
"""
import seaborn as sb
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.preprocessing import scale
from sklearn.metrics import silhouette_score
from sklearn.metrics import davies_bouldin_score
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler as sc
from mpl_toolkits import mplot3d
import plotly.express as px
dta=pd.read_csv("D:/XLRI/Term-4/ML/Assignment-2/Prpd_2.csv")
dta.head()
dta1=dta.drop("Cid",axis=1,inplace=False)
#dta1=dta1.iloc[:,1:4]
dta1=pd.DataFrame(dta1)
dta1.head()
dta1.describe()
dta1=pd.DataFrame(dta1)
dta1.describe()
ncl=[]
for i in range(1,15):
kn=KMeans(n_clusters=i)
kn.fit(dta1)
ncl.append(kn.inertia_)
plt.plot(range(1,15),ncl)
#silhoute method
sil = []
for n in range(2,15):
kn1=KMeans(n_clusters = n)
kn1.fit(dta1)
# labels = kn1.labels_
sil.append(silhouette_score(dta1,kn1.labels_, metric = 'euclidean'))
plt.plot(range(2,15),sil)
#Davies Bouldin Index method
db = []
K1 = range(2,8)
for l in K1:
kn2 = (KMeans(n_clusters = l) )
kn2.fit(dta1)
db.append(davies_bouldin_score(dta1,kn2.labels_))
plt.plot(range(2,8),db)
sa=sc()
sa.fit(dta1)
tdta1=sa.transform(dta1)
tdta1=pd.DataFrame(tdta1)
kmc=KMeans(n_clusters=6)
kmc.fit(tdta1)
clus=kmc.predict(tdta1)
dta["clus"]=clus
dta.head()
clus4=dta[dta.clus==4]
clus4.describe()
clus0=dta[dta.clus==0]
clus0.describe()
clus5=dta[dta.clus==5]
clus5.describe()
clus3=dta[dta.clus==3]
clus3.describe()
sb.scatterplot("Recency","Frequency",data=dta,hue="clus")
sb.scatterplot("Frequency","Money",data=dta,hue="clus")
# Creating dataset
z = dta.Recency
x = dta.Frequency
y = dta.Money
z.head()
x.head()
y.head()
# Creating figure
#fig = plt.figure()
#ax = fig.add_subplot(111,projection ="3d")
#dta=pd.DataFrame(dta)
#dta.head()
#for a in range(0,5):
# ax.scatter(dta.Frequency[dta.clus==a],dta.Recency[dta.clus==a],dta.Money[dta.clus==a],label=a,hue="clus")
#ax.legend()
#plt.title("simple 3D scatter plot")
#plt.show()
#df = px.data.iris()
#fig = px.scatter_3d(df, x='sepal_length', y='sepal_width', z='petal_width',color='petal_length',symbol='species')
#fig=plt.figure()
Hello Frieds,
I am newbie to python. Just learning. I have taken a dataset and clustered it. Now, I want to plot it in 3d scatter plot with a 4th dimension that is my cluster as color. For each cluster no new color should appear. So a data point will be plotted as x,y,z attribute but it will have color based on 4th column that is my cluster number. I know how to do it in 2d with hue. But I am unable to find similar thing in 3d plot. Any help will be appreicated. Atatching my code too.
I tried many libraries from online tutorial but I am not egtting exactly what I am looking for. I have attached a sample for how I want it to be plotted. Sample taken from plotly.com This is just replication how I want to plot.