1

I am training an object detection model out of the TensorFlow Model Garden (namely, 'http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz'). I configure my data augmentation in the pipline.config file. The full list of data augmentation options are in the preprocessor.proto under the tensorflow/models/research/object_detection/protos.

Here is my pipeline.config content:

model {
  ssd {
    num_classes: 2
    image_resizer {
      fixed_shape_resizer {
        height: 320
        width: 320
      }
    }
    feature_extractor {
      type: "ssd_mobilenet_v2_fpn_keras"
      depth_multiplier: 1.0
      min_depth: 16
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 4e-05
          }
        }
        initializer {
          random_normal_initializer {
            mean: 0.0
            stddev: 0.01
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.997
          scale: true
          epsilon: 0.001
        }
      }
      use_depthwise: true
      override_base_feature_extractor_hyperparams: true
      fpn {
        min_level: 3
        max_level: 7
        additional_layer_depth: 128
      }
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
        use_matmul_gather: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      weight_shared_convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 4e-05
            }
          }
          initializer {
            random_normal_initializer {
              mean: 0.0
              stddev: 0.01
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.997
            scale: true
            epsilon: 0.001
          }
        }
        depth: 128
        num_layers_before_predictor: 4
        kernel_size: 3
        class_prediction_bias_init: -4.6
        share_prediction_tower: true
        use_depthwise: true
      }
    }
    anchor_generator {
      multiscale_anchor_generator {
        min_level: 3
        max_level: 7
        anchor_scale: 4.0
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        scales_per_octave: 2
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-08
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
        use_static_shapes: false
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid_focal {
          gamma: 2.0
          alpha: 0.25
        }
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    encode_background_as_zeros: true
    normalize_loc_loss_by_codesize: true
    inplace_batchnorm_update: true
    freeze_batchnorm: false
  }
}
train_config {
  batch_size: 4
random_horizontal_flip {
      keypoint_flip_permutation: 1
      keypoint_flip_permutation: 0
      keypoint_flip_permutation: 2
      keypoint_flip_permutation: 3
      keypoint_flip_permutation: 5
      keypoint_flip_permutation: 4
      probability: 0.5
    }
  } 
data_augmentation_options {
    random_vertical_flip {
      keypoint_flip_permutation: 1
      keypoint_flip_permutation: 0
      keypoint_flip_permutation: 2
      keypoint_flip_permutation: 3
      keypoint_flip_permutation: 5
      keypoint_flip_permutation: 4
      probability: 0.5
    }
  }  
  
  data_augmentation_options {
    normalize_image{
      original_minval: 0.0
      original_maxval: 255.0
      target_minval: -1.0
      target_maxval: 1.0
    }
  }  

  data_augmentation_options {
    random_image_scale{
       min_scale_ratio: 0.8
        max_scale_ratio: 2.2
    }
  } 
  sync_replicas: true
  optimizer {
    momentum_optimizer {
      learning_rate {
        cosine_decay_learning_rate {
          learning_rate_base: 0.08
          total_steps: 50000
          warmup_learning_rate: 0.026666
          warmup_steps: 1000
        }
      }
      momentum_optimizer_value: 0.9
    }
    use_moving_average: false
  }
  fine_tune_checkpoint: "C:/Users/abukwah/source/repos/Edge_Detection/Tensorflow/workspace/pre-trained-models/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8/checkpoint/ckpt-0"
  num_steps: 50000
  startup_delay_steps: 0.0
  replicas_to_aggregate: 8
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
  fine_tune_checkpoint_type: "detection"
  fine_tune_checkpoint_version: V2
}
train_input_reader {
  label_map_path: "C:/Users/Katzoos/source/repos/Edge_Detection/Tensorflow/workspace/annotations/label_map.pbtxt"
  tf_record_input_reader {
    input_path: "C:/Users/Katzoos/source/repos/Edge_Detection/Tensorflow/workspace/annotations/train.record"
  }
}
eval_config {
  metrics_set: "coco_detection_metrics"
  use_moving_averages: false
}
eval_input_reader {
  label_map_path: "C:/Users/Katzoos/source/repos/Edge_Detection/Tensorflow/workspace/annotations/label_map.pbtxt"
  shuffle: false
  num_epochs: 1
  tf_record_input_reader {
    input_path: "C:/Users/Katzoos/source/repos/Edge_Detection/Tensorflow/workspace/annotations/test.record"
  }
}

My question is how can I visualize the results of the data augmentation that is part of the training pipeline? And can I see it after the training is done (is saved somewhere) or should I edit the code in the Tensorflow\models\research\object_detection\model_main_tf2.py file?

I am using Tensorflow 2.10.0, Python 3.9.15, CUDA 11.2, CuDNN 8.1.

I tried to find answers on the Tensorflow Model Garden documentation and couldn't find answer to my question.

Katzoos
  • 11
  • 1

0 Answers0