-1

I am in the early stage of developing an image segmentation service. Currently, I have a simple Flask server that is responsible for receiving data and running a docker container with an AI model in the local GPU server. But I also think about something asynchronous like FastAPI or Nodejs to implement some scheduler for prediction tasks. What is better: a) when the server calls the docker container by ssh and the docker container run only when it is called, predicted images, saved results, and stopped, or b) running an API server inside the AI container? Each container is around 5-10GB. Running all containers looks more expensive, but I am not sure what practice is better.

I tried to call the container each time and stop it after work was done.

1 Answers1

0

You should avoid approaches based on dynamically starting containers and approaches based on ssh. I'd recommend a long-running process that accepts some network input, like your existing Flask server, and either always has the ML model running or launches it as a subprocess.

If you can use a subprocess that could be a good match here. When the subprocess exits, all of its memory resources will be automatically cleaned up, so you won't have the cost of the subprocess when it's not being used. If the container happens to exit, the subprocess will get cleaned up with it. Subprocesses are also basic Unix functionality, so you can locally develop your service without needing any particular complex setup.

Dynamically launching containers comes with many challenges. It ties your application to the Docker API, which will make it harder to run, even in local development. Using that API grants unrestricted root-level access to the host system (you can very easily run a container that compromises the host). You need to remember to clean up after your own containers. The setup may not work in other container systems like Kubernetes that don't make a Docker socket available.

An ssh-based system presents different complexities. You need to distribute credentials to various places. If you're trying to run an ssh daemon inside a Docker container, that is difficult to configure securely (what creates the host keys? how do you provision users and private keys?). You also need to think about various failure cases around the ssh transport that might not be present in a purely-local system.

David Maze
  • 130,717
  • 29
  • 175
  • 215