save_best_only: if save_best_only=True, it only saves when the model is considered the "best" and the latest best model according to the quantity monitored will not be overwritten. If filepath doesn't contain formatting options like {epoch} then filepath will be overwritten by each new better model.
restore_best_weights: Whether to restore model weights from the epoch with the best value of the monitored quantity. If False, the model weights obtained at the last step of training are used. An epoch will be restored regardless of the performance relative to the baseline. If no epoch improves on baseline, training will run for patience epochs and restore weights from the best epoch in that set.
If I train my model and save the best model and restore the weights of the best epoch... - am I not doing the same thing twice? Would it not just produce two model files, one for the epoch and one for the final model but both actually being the same?
Then if this is correct which would be the preferred method to use? (As I understand, models are sometimes held in memory EarlyStopping for but not sure about model_checkpoint ModelCheckpoint)