Hello everyone so I made this cnn model.
My data:
Train folder->30 classes->800 images each->24000 all together
Validation folder->30 classes->100 images each->3000 all together
Test folder->30 classes -> 100 images each -> 3000 all together
-I've applied data augmentation. ( on the train data)
-I got 5 conv layers with filters 32->64->128->128->128
each with maxpooling and batch normalization
-Added dropout 0.5 after flattening layers
Train part looks good. Validation part has a lot of 'jumps' though. Does it overfit?
Is there any way to fix this and make validation part more stable?
Note: I plann to increase epochs on my final model I'm just experimenting to see what works best since the model takes a lot of time in order to train. So for now I train with 20 epochs.