I used the code implemented by bigmb, but the output of R2AttUnet in .train() mode are 10 times bigger than in .eval() mode. The U_net and AttU_net are good. But R2AttU_net and R2U_net always have this problem. I think it's because the same BatchNorm is used in Recurrent_block. But I have no idea how to fix it. Can anyone help me?
from __future__ import print_function, division
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch
from torch.nn import init
class conv_block(nn.Module):
"""
Convolution Block
"""
def __init__(self, in_ch, out_ch):
super(conv_block, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True))
def forward(self, x):
x = self.conv(x)
return x
class up_conv(nn.Module):
"""
Up Convolution Block
"""
def __init__(self, in_ch, out_ch):
super(up_conv, self).__init__()
self.up = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.up(x)
return x
### initalize the module
def init_weights(net, init_type='normal'):
#print('initialization method [%s]' % init_type)
if init_type == 'kaiming':
net.apply(weights_init_kaiming)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
def weights_init_kaiming(m):
classname = m.__class__.__name__
#print(classname)
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('BatchNorm') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
class U_Net(nn.Module):
"""
UNet - Basic Implementation
Paper : https://arxiv.org/abs/1505.04597
"""
def __init__(self, in_ch=3, out_ch=1):
super(U_Net, self).__init__()
n1 = 64
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]
self.Maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Conv1 = conv_block(in_ch, filters[0])
self.Conv2 = conv_block(filters[0], filters[1])
self.Conv3 = conv_block(filters[1], filters[2])
self.Conv4 = conv_block(filters[2], filters[3])
self.Conv5 = conv_block(filters[3], filters[4])
self.Up5 = up_conv(filters[4], filters[3])
self.Up_conv5 = conv_block(filters[4], filters[3])
self.Up4 = up_conv(filters[3], filters[2])
self.Up_conv4 = conv_block(filters[3], filters[2])
self.Up3 = up_conv(filters[2], filters[1])
self.Up_conv3 = conv_block(filters[2], filters[1])
self.Up2 = up_conv(filters[1], filters[0])
# self.Up_conv2 = conv_block(filters[1], filters[0])
self.Up_conv2 = conv_block(filters[1], filters[1])
self.Conv = nn.Conv2d(filters[1], out_ch, kernel_size=1, stride=1, padding=0)
self.active = torch.nn.Sigmoid()
# self.active = torch.nn.Tanh()
# initialise weights
for m in self.modules():
if isinstance(m, nn.Conv2d):
init_weights(m, init_type='kaiming')
elif isinstance(m, nn.BatchNorm2d):
init_weights(m, init_type='kaiming')
def forward(self, x):
# print('in:', x.max(), x.min())
e1 = self.Conv1(x)
e2 = self.Maxpool1(e1)
e2 = self.Conv2(e2)
e3 = self.Maxpool2(e2)
e3 = self.Conv3(e3)
e4 = self.Maxpool3(e3)
e4 = self.Conv4(e4)
e5 = self.Maxpool4(e4)
e5 = self.Conv5(e5)
# print('e5:', e5.max(), e5.min())
d5 = self.Up5(e5)
d5 = torch.cat((e4, d5), dim=1)
d5 = self.Up_conv5(d5)
d4 = self.Up4(d5)
d4 = torch.cat((e3, d4), dim=1)
d4 = self.Up_conv4(d4)
d3 = self.Up3(d4)
d3 = torch.cat((e2, d3), dim=1)
d3 = self.Up_conv3(d3)
d2 = self.Up2(d3)
d2 = torch.cat((e1, d2), dim=1)
# d2 = self.Up_conv2(d2)
# print('d2:', d2.max(), d2.min())
out = self.Conv(d2)
# print('out:', out.max(), out.min())
out = self.active(out)
# print('out:', out.max(), out.min())
# out = self.f_conv(d2)
# print('out:', out.max(), out.min())
return out
class Recurrent_block(nn.Module):
"""
Recurrent Block for R2Unet_CNN
"""
def __init__(self, out_ch, t=2):
super(Recurrent_block, self).__init__()
self.t = t
self.out_ch = out_ch
self.conv = nn.Sequential(
nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
for i in range(self.t):
if i == 0:
x = self.conv(x)
out = self.conv(x + x)
return out
class RRCNN_block(nn.Module):
"""
Recurrent Residual Convolutional Neural Network Block
"""
def __init__(self, in_ch, out_ch, t=2):
super(RRCNN_block, self).__init__()
self.RCNN = nn.Sequential(
Recurrent_block(out_ch, t=t),
Recurrent_block(out_ch, t=t)
)
self.Conv = nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=1, padding=0)
def forward(self, x):
x1 = self.Conv(x)
x2 = self.RCNN(x1)
out = x1 + x2
return out
class R2U_Net(nn.Module):
"""
R2U-Unet implementation
Paper: https://arxiv.org/abs/1802.06955
"""
def __init__(self, img_ch=3, output_ch=1, t=2):
super(R2U_Net, self).__init__()
n1 = 64
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]
self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Upsample = nn.Upsample(scale_factor=2)
self.RRCNN1 = RRCNN_block(img_ch, filters[0], t=t)
self.RRCNN2 = RRCNN_block(filters[0], filters[1], t=t)
self.RRCNN3 = RRCNN_block(filters[1], filters[2], t=t)
self.RRCNN4 = RRCNN_block(filters[2], filters[3], t=t)
self.RRCNN5 = RRCNN_block(filters[3], filters[4], t=t)
self.Up5 = up_conv(filters[4], filters[3])
self.Up_RRCNN5 = RRCNN_block(filters[4], filters[3], t=t)
self.Up4 = up_conv(filters[3], filters[2])
self.Up_RRCNN4 = RRCNN_block(filters[3], filters[2], t=t)
self.Up3 = up_conv(filters[2], filters[1])
self.Up_RRCNN3 = RRCNN_block(filters[2], filters[1], t=t)
self.Up2 = up_conv(filters[1], filters[0])
self.Up_RRCNN2 = RRCNN_block(filters[1], filters[0], t=t)
self.Conv = nn.Conv2d(filters[1], output_ch, kernel_size=1, stride=1, padding=0)
self.active = torch.nn.Sigmoid()
def forward(self, x):
e1 = self.RRCNN1(x)
e2 = self.Maxpool(e1)
e2 = self.RRCNN2(e2)
e3 = self.Maxpool1(e2)
e3 = self.RRCNN3(e3)
e4 = self.Maxpool2(e3)
e4 = self.RRCNN4(e4)
e5 = self.Maxpool3(e4)
e5 = self.RRCNN5(e5)
d5 = self.Up5(e5)
d5 = torch.cat((e4, d5), dim=1)
d5 = self.Up_RRCNN5(d5)
d4 = self.Up4(d5)
d4 = torch.cat((e3, d4), dim=1)
d4 = self.Up_RRCNN4(d4)
d3 = self.Up3(d4)
d3 = torch.cat((e2, d3), dim=1)
d3 = self.Up_RRCNN3(d3)
d2 = self.Up2(d3)
d2 = torch.cat((e1, d2), dim=1)
# d2 = self.Up_RRCNN2(d2)
out = self.Conv(d2)
out = self.active(out)
return out
class Attention_block(nn.Module):
"""
Attention Block
"""
def __init__(self, F_g, F_l, F_int):
super(Attention_block, self).__init__()
self.W_g = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
out = x * psi
return out
class AttU_Net(nn.Module):
"""
Attention Unet implementation
Paper: https://arxiv.org/abs/1804.03999
"""
def __init__(self, img_ch=3, output_ch=1):
super(AttU_Net, self).__init__()
n1 = 64
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]
self.Maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Conv1 = conv_block(img_ch, filters[0])
self.Conv2 = conv_block(filters[0], filters[1])
self.Conv3 = conv_block(filters[1], filters[2])
self.Conv4 = conv_block(filters[2], filters[3])
self.Conv5 = conv_block(filters[3], filters[4])
self.Up5 = up_conv(filters[4], filters[3])
self.Att5 = Attention_block(F_g=filters[3], F_l=filters[3], F_int=filters[2])
self.Up_conv5 = conv_block(filters[4], filters[3])
self.Up4 = up_conv(filters[3], filters[2])
self.Att4 = Attention_block(F_g=filters[2], F_l=filters[2], F_int=filters[1])
self.Up_conv4 = conv_block(filters[3], filters[2])
self.Up3 = up_conv(filters[2], filters[1])
self.Att3 = Attention_block(F_g=filters[1], F_l=filters[1], F_int=filters[0])
self.Up_conv3 = conv_block(filters[2], filters[1])
self.Up2 = up_conv(filters[1], filters[0])
self.Att2 = Attention_block(F_g=filters[0], F_l=filters[0], F_int=32)
self.Up_conv2 = conv_block(filters[1], filters[0])
self.Conv = nn.Conv2d(filters[1], output_ch, kernel_size=1, stride=1, padding=0)
self.active = torch.nn.Sigmoid()
def forward(self, x):
e1 = self.Conv1(x)
e2 = self.Maxpool1(e1)
e2 = self.Conv2(e2)
e3 = self.Maxpool2(e2)
e3 = self.Conv3(e3)
e4 = self.Maxpool3(e3)
e4 = self.Conv4(e4)
e5 = self.Maxpool4(e4)
e5 = self.Conv5(e5)
#print(x5.shape)
d5 = self.Up5(e5)
#print(d5.shape)
x4 = self.Att5(g=d5, x=e4)
d5 = torch.cat((x4, d5), dim=1)
d5 = self.Up_conv5(d5)
d4 = self.Up4(d5)
x3 = self.Att4(g=d4, x=e3)
d4 = torch.cat((x3, d4), dim=1)
d4 = self.Up_conv4(d4)
d3 = self.Up3(d4)
x2 = self.Att3(g=d3, x=e2)
d3 = torch.cat((x2, d3), dim=1)
d3 = self.Up_conv3(d3)
d2 = self.Up2(d3)
x1 = self.Att2(g=d2, x=e1)
d2 = torch.cat((x1, d2), dim=1)
# d2 = self.Up_conv2(d2)
out = self.Conv(d2)
out = self.active(out)
return out
class R2AttU_Net(nn.Module):
"""
Residual Recuurent Block with attention Unet
Implementation : https://github.com/LeeJunHyun/Image_Segmentation
"""
def __init__(self, in_ch=3, out_ch=1, t=2):
super(R2AttU_Net, self).__init__()
n1 = 64
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]
self.Maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.Maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.RRCNN1 = RRCNN_block(in_ch, filters[0], t=t)
self.RRCNN2 = RRCNN_block(filters[0], filters[1], t=t)
self.RRCNN3 = RRCNN_block(filters[1], filters[2], t=t)
self.RRCNN4 = RRCNN_block(filters[2], filters[3], t=t)
self.RRCNN5 = RRCNN_block(filters[3], filters[4], t=t)
self.Up5 = up_conv(filters[4], filters[3])
self.Att5 = Attention_block(F_g=filters[3], F_l=filters[3], F_int=filters[2])
self.Up_RRCNN5 = RRCNN_block(filters[4], filters[3], t=t)
self.Up4 = up_conv(filters[3], filters[2])
self.Att4 = Attention_block(F_g=filters[2], F_l=filters[2], F_int=filters[1])
self.Up_RRCNN4 = RRCNN_block(filters[3], filters[2], t=t)
self.Up3 = up_conv(filters[2], filters[1])
self.Att3 = Attention_block(F_g=filters[1], F_l=filters[1], F_int=filters[0])
self.Up_RRCNN3 = RRCNN_block(filters[2], filters[1], t=t)
self.Up2 = up_conv(filters[1], filters[0])
self.Att2 = Attention_block(F_g=filters[0], F_l=filters[0], F_int=32)
self.Up_RRCNN2 = RRCNN_block(filters[1], filters[1], t=t)
self.Conv = nn.Conv2d(filters[1], out_ch, kernel_size=1, stride=1, padding=0)
self.active = torch.nn.Sigmoid()
def forward(self, x):
e1 = self.RRCNN1(x)
e2 = self.Maxpool1(e1)
e2 = self.RRCNN2(e2)
e3 = self.Maxpool2(e2)
e3 = self.RRCNN3(e3)
e4 = self.Maxpool3(e3)
e4 = self.RRCNN4(e4)
e5 = self.Maxpool4(e4)
e5 = self.RRCNN5(e5)
d5 = self.Up5(e5)
e4 = self.Att5(g=d5, x=e4)
d5 = torch.cat((e4, d5), dim=1)
d5 = self.Up_RRCNN5(d5)
d4 = self.Up4(d5)
e3 = self.Att4(g=d4, x=e3)
d4 = torch.cat((e3, d4), dim=1)
d4 = self.Up_RRCNN4(d4)
d3 = self.Up3(d4)
e2 = self.Att3(g=d3, x=e2)
d3 = torch.cat((e2, d3), dim=1)
d3 = self.Up_RRCNN3(d3)
d2 = self.Up2(d3)
e1 = self.Att2(g=d2, x=e1)
d2 = torch.cat((e1, d2), dim=1)
d2 = self.Up_RRCNN2(d2)
out = self.Conv(d2)
out = self.active(out)
return out
Model build:
self.Generator = R2AttU_Net(3, self.n_bs*3).cuda()
Train:
self.Generator.train()
batch_size = target_n.shape[0]
out_img_delta_bs = self.Generator(target_n)
print(out_img_delta_bs.max(), out_img_delta_bs.min(), gt_target_delta_bs.max(), gt_target_delta_bs.min())
loss1 = self.L1_loss(out_img_delta_bs, gt_target_delta_bs)
loss = loss1
self.optim.zero_grad()
loss.backward()
self.optim.step()
Out Train after 200/1188 Iters: tensor(0.2333, device='cuda:0', grad_fn=) tensor(-0.2569, device='cuda:0', grad_fn=) tensor(0.2999, device='cuda:0') tensor(-0.3227, device='cuda:0')
Eval:
self.Generator.eval()
with torch.no_grad():
out_img_delta_bs_ = self.Generator(target_n)
loss1_ = self.L1_loss(out_img_delta_bs_, gt_target_delta_bs)
loss_ = loss1_
print(out_img_delta_bs_.max(), out_img_delta_bs_.min(), gt_target_delta_bs.max(), gt_target_delta_bs.min())
Out Eval: tensor(0.0087, device='cuda:0') tensor(-0.0210, device='cuda:0') tensor(0.4791, device='cuda:0') tensor(-0.4507, device='cuda:0')
How to fix the BatchNorm layers in Recurrent Block and Recurrent Residual Convolutional Neural Network Block? Why this happened?