I got this issue, when I ingested/wrote data to FeatureSet (part of MLRun FeatureStore) and than I read the data via PySpark (it seems as invalid parquet). See exception:
AnalysisException Traceback (most recent call last)
<ipython-input-8-a8c688f9ceb5> in <module>
----> 1 newDF1 = spark.read.parquet(f"v3io://projects/{project_name}/FeatureStore/FS-ingest")
2 newDF1.show()
/spark/python/pyspark/sql/readwriter.py in parquet(self, *paths, **options)
299 int96RebaseMode=int96RebaseMode)
300
--> 301 return self._df(self._jreader.parquet(_to_seq(self._spark._sc, paths)))
302
303 def text(self, paths, wholetext=False, lineSep=None, pathGlobFilter=None,
/spark/python/lib/py4j-0.10.9.3-src.zip/py4j/java_gateway.py in __call__(self, *args)
1320 answer = self.gateway_client.send_command(command)
1321 return_value = get_return_value(
-> 1322 answer, self.gateway_client, self.target_id, self.name)
1323
1324 for temp_arg in temp_args:
/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
115 # Hide where the exception came from that shows a non-Pythonic
116 # JVM exception message.
--> 117 raise converted from None
118 else:
119 raise
AnalysisException: Unable to infer schema for Parquet. It must be specified manually.
See the key part of source code (which generated the exception):
...
feature_set1=fstore.FeatureSet(name="FS-ingest",entities=[fstore.Entity('app'),fstore.Entity('id')],engine="spark",timestamp_key='time')
feature_set1.set_targets(targets=[ParquetTarget(name="s1",partitioned=False),NoSqlTarget(name="s2")],with_defaults=False)
feature_set1.save()
fstore.ingest(f"store://feature-sets/{project_name}/FS-ingest", sparkDF,spark_context=spark, overwrite=True)
...
newDF1 = spark.read.parquet(f"v3io://projects/{project_name}/FeatureStore/FS-ingest")
newDF1.show()
Did you see similar issue?
NOTE: Parquet path contains parquet files (all files are valid), it means the ingestion was succesful.