The GridSearchCV is passed to ExponentiatedGradient. But after fitting the ExponentiatedGradient, cv_results_ are not returned.
gs = GridSearchCV(
estimator=model,
param_grid=param,
cv=RepeatedKFold(n_splits=5, n_repeats=2),
scoring=scoring,
return_train_score=True,
refit='roc_auc_curve',
n_jobs=-1)
mitigator = ExponentiatedGradient(gs, constraints=EqualizedOdds())
mitigator.fit(train_X, y_train, sensitive_features=x_train[set_sa])
print(mitigator.estimator)
GridSearchCV(cv=RepeatedKFold(n_repeats=2, n_splits=5, random_state=None),
estimator=RandomForestClassifier(), n_jobs=-1,
param_grid={'max_depth': [4, 7, 10],
'n_estimators': [100, 250, 500]},
refit='roc_auc_curve', return_train_score=True,
scoring={'acc': 'accuracy', 'bal_acc': 'balanced_accuracy',
'f1': 'f1', 'f1_weighted': 'f1_weighted',
'gmean': make_scorer(geometric_mean_score),
'roc_auc_curve': make_scorer(roc_auc_score, needs_proba=True, max_fpr=0.001)})
print(mitigator.estimator.cv_results_)
AttributeError: 'GridSearchCV' object has no attribute 'cv_results_'