I'm trying to identify a suitable bandwidth to use for a geographically weighted regression but every time I search for the bandwidth it displays that there are missing (NaN) values within the arrays of the dataset. Although, each row features all values.
g_y = df_ct2008xy['2008 HP'].values.reshape((-1,1))
g_X = df_ct2008xy[['2008 AF', '2008 MI', '2008 MP', '2008 EB']].values
u = df_ct2008xy['X']
v = df_ct2008xy['Y']
g_coords = list(zip(u,v))
g_X = (g_X - g_X.mean(axis=0)) / g_X.std(axis=0)
g_y = g_y.reshape((-1,1))
g_y = (g_y - g_y.mean(axis=0)) / g_y.std(axis=0)
bw = mgwr.sel_bw.Sel_BW(g_coords,
g_y, # Independent variable
g_X, # Dependent variable
fixed=True, # True for fixed bandwidth and false for adaptive bandwidth
spherical=True) # Spherical coordinates (long-lat) or projected coordinates
I searched using numpy to identify if these were individual values using
np.isnan(g_y).any()
and
np.isnan(g_X)
but apparently every value is 'missing' and returning 'True'