I think that Mathematica doesn't know how to deal with these boundary conditions for 2nd order PDEs. How would you want the answer returned? As a general Fourier series?
This is mentioned in the Mathematica Cookbook (and probably other places)...
Breaking down the problem for Mathematica (with the dimensional factor v->1
), you find
In[1]:= genSoln = DSolve[D[u[x, t], {x, 2}] == D[u[x, t], {t, 2}], u, {x, t}] // First
Out[1]= {u -> Function[{x, t}, C[1][t - x] + C[2][t + x]]}
In[2]:= Solve[u[0, t] == 0 /. genSoln]
Out[2]= {{C[1][t] -> -C[2][t]}}
In[3]:= u[l, 0] == 0 /. genSoln /. C[1][x_] :> -C[2][x] // Simplify
Out[3]= C[2][-l] == C[2][l]
that the solution is written as f(t-x)-f(t+x)
where f
is periodic over [-l,l]
...
You can't do any more with out making assumptions about the smoothness of the solution.
You can check that the standard Fourier series approach would work, e.g.
In[4]:= f[x_, t_] := Sin[n Pi (t + x)/l] - Sin[n Pi (t - x)/l]
In[5]:= And[D[u[x, t], {x, 2}] == D[u[x, t], {t, 2}],
u[0, t] == 0, u[l, 0] == 0] /. u -> f // Reduce[#, n] & // Simplify
Out[5]= C[1] \[Element] Integers && (n == 2 C[1] || n == 1 + 2 C[1])