Combining CountVectorizer()
with ColumnTransformer()
gives me an error. Here is a reproduced case:
from sklearn.compose import ColumnTransformer
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
# Create a sample data frame
df = pd.DataFrame({
'corpus': ['This is the first document.', 'This document is the second document.', 'And this is the third one.',
'Is this the first document?', 'I have the fourth document'],
'word_length': [27, 37, 26, 27, 26]
})
text_feature = ["corpus"]
count_transformer = CountVectorizer()
# Create the ColumnTransformer
ct = ColumnTransformer(transformers=[
("count", count_transformer, text_feature)],
remainder='passthrough')
ct.fit_transform(df)
The output says:
ValueError: all the input array dimensions for the concatenation axis must match exactly, but along dimension 0, the array at index 0 has size 1 and the array at index 1 has size 5
I tried the code below which does the job but is doesn't scale easily as ColumnTransformer()
.
np.c_[count_transformer.fit_transform(df["corpus"]).toarray(), df["word_length"].values]
.
The result is the numpy array below:
array([[ 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 27],
0, 2, 0, 0, 0, 1, 0, 1, 1, 0, 1, 37],
1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 26],
0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 27],
0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 26]], dtype=int64)