based on the aws documentation/example provided here , https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-pipelines/tabular/abalone_build_train_deploy/sagemaker-pipelines-preprocess-train-evaluate-batch-transform.html#Define-a-Transform-Step-to-Perform-Batch-Transformation, a model is created and a batch transform inference can be run on the trained model. it works for this example but if we need a custom inference script, How do we include a custom inference script in the model or model package before we run the batch transformation ?
from sagemaker.transformer import Transformer
from sagemaker.inputs import TransformInput
from sagemaker.workflow.steps import TransformStep
transformer = Transformer(
model_name=step_create_model.properties.ModelName,
instance_type="ml.m5.xlarge",
instance_count=1,
output_path=f"s3://{default_bucket}/AbaloneTransform",
)
step_transform = TransformStep(
name="AbaloneTransform", transformer=transformer, inputs=TransformInput(data=batch_data)
)