There is this proof that I thought of that I am not quite sure if it's valid or not.
Suppose you had to prove the nonregularity of the following language:
A = { 0^n 1^n 2^n | n>= 0 }
The proof I devised picks a string that belongs in the language, such as 012, and show that it doesn't matter how it's divided, the pumping lemma is not wholly satisfied(I could post the entire proof, but the post is verbose as it is). According to my professor however, this proof cannot be accepted.
He did not explain why, and I don't see how such a proof would be insufficent to demonstrate that a language is not regular. If a string clearly belonging to an assumed regular language does not satisfy the pumping lemma, the language clearly has strings that are not regular as part of it set of strings, therefore the language is not regular.
I believe the reason my professor rejected this proof is because in the majority of problems the pumping length P cannot be correctly guessed. At the same time I do not see how my proof could be proven wrong with a counterexample.