So, I'm working to teach myself Scala, and one of the things I've been playing with is the Stream
class. I tried to use a naïve translation of the classic Haskell version of Dijkstra's solution to the Hamming number problem:
object LazyHammingBad {
private def merge(a: Stream[BigInt], b: Stream[BigInt]): Stream[BigInt] =
(a, b) match {
case (x #:: xs, y #:: ys) =>
if (x < y) x #:: merge(xs, b)
else if (y < x) y #:: merge(a, ys)
else x #:: merge(xs, ys)
}
val numbers: Stream[BigInt] =
1 #:: merge(numbers map { _ * 2 },
merge(numbers map { _ * 3 }, numbers map { _ * 5 }))
}
Taking this for a spin in the interpreter led quickly to disappointment:
scala> LazyHammingBad.numbers.take(10).toList
java.lang.StackOverflowError
I decided to look to see if other people had solved the problem in Scala using the Haskell approach, and adapted this solution from Rosetta Code:
object LazyHammingGood {
private def merge(a: Stream[BigInt], b: Stream[BigInt]): Stream[BigInt] =
if (a.head < b.head) a.head #:: merge(a.tail, b)
else if (b.head < a.head) b.head #:: merge(a, b.tail)
else a.head #:: merge(a.tail, b.tail)
val numbers: Stream[BigInt] =
1 #:: merge(numbers map {_ * 2},
merge(numbers map {_ * 3}, numbers map {_ * 5}))
}
This one worked nicely, but I still wonder how I went wrong in LazyHammingBad
. Does using #::
to destructure x #:: xs
force the evaluation of xs
for some reason? Is there any way to use pattern matching safely with infinite streams, or do you just have to use head
and tail
if you don't want things to blow up?