I'm trying to parallelize a simulation of an Ising 2D model to get some expected values as a function of the temperature of the system. For L=48, the one-threaded version takes about 240 seconds to run 20 temperatures and 1 seed each, but the parallelized version takes about 268 seconds, which is similar.
If you take the time per seed per temperature, it results in 12 seconds for the one-threaded version and 13.4 seconds for the parallelized version. I'm looking for help with my code because I don't understand these durations. I thought that the parallelized version would split one temperature among all threads and therefore should take about 30 seconds to complete.
I need to run the simulation for 50 temperatures and 200 seeds each, for 5 values of L. It would be helpful to reduce the compute time, because otherwise it could take 20 hours for L=48 and some days for L=72.
I'm using an i7-10700KF (8 cores, 16 logical threads).
program Ising
use omp_lib
implicit none
integer L, seed, i, j, seed0, nseed,k
parameter (L=48)
integer s(1:L, 1:L)
integer*4 pbc(0:L+1), mctot, N, mcd, mcini, difE
real*8 genrand_real2, magne, energ, energia, temp, temp1, DE
real*8 mag, w(-8:8)
real*8 start, finish
real*8 sum, sume, sume2, summ, summ2, sumam, vare, varm, maxcv, maxx
real*8 cv, x, Tmaxcv, Tmaxx
integer irand, jrand
11 format(10(f20.6))
! Initialize variables
mctot = 80000
mcd = 20
mcini = 8000
N = L*L
seed0 = 20347880
nseed = 20
maxcv=0.d0
maxx=0.d0
! Initialize vector pbc
pbc(0) = L
pbc(L+1) = 1
do i = 1, L
pbc(i) = i
end do
! Initialize matrix s with random values
do i = 1, L
do j = 1, L
if (genrand_real2() < 0.5) then
s(i,j) = 1
else
s(i,j) = -1
endif
end do
end do
! Metropolis algorithm
open(1, file='Expectation values.dat')
start = omp_get_wtime()
write(1,*) '#Temp, ','E, ','E2, ','M, ','M2, ','|M|, ','VarE, ','VarM, ',&
'Cv, ','X, '
!Start loop to calculate for different temperatures
!$OMP PARALLEL PRIVATE(s,seed,w,energia,difE,irand,jrand,temp,mag,sum,sume,sume2,summ,summ2,sumam,vare,varm,cv,x)
temp1 = 1.59d0
!$OMP DO ordered schedule(dynamic)
do k = 1, 10
temp = temp1 + (0.01d0*k)
!Define the matrix w, which contains the values of the Boltzmann function for each temperature, so as not to have to calculate them each iteration
do i = -8, 8
w(i) = dexp(-i/temp)
end do
write(*,*) "Temperature: ", temp, "Thread", omp_get_thread_num()
sum = 0.d0
sume = 0.d0
sume2 = 0.d0
summ = 0.d0
summ2 = 0.d0
sumam = 0.d0
do seed = seed0, seed0 + nseed-1, 1
call init_genrand(seed)
call reinicia(s,l)
energia = energ(s,l,pbc)
do i = 1, mctot
do j = 1, N
irand = int(genrand_real2()*L) + 1
jrand = int(genrand_real2()*L) + 1
difE = int(DE(s,l,irand,jrand,pbc))
if (difE < 0) then
s(irand,jrand) = -s(irand,jrand)
energia = energia + difE
else if (genrand_real2() < w(int(difE))) then
s(irand,jrand) = -s(irand,jrand)
energia = energia + difE
endif
end do
if ((i > mcini).and.(mcd*(i/mcd)==i)) then
mag= magne(s,l)
sum = sum + 1.d0
sume = sume + energia
sume2 = sume2 + energia**2
summ = summ + mag
summ2 = summ2 + mag**2
sumam = sumam + abs(mag)
endif
end do
end do
!Energy
sume=sume/(sum*N)
sume2=sume2/(sum*N*N)
!Magnetitzation
summ = summ/(sum*N)
sumam=sumam/(sum*N)
summ2=summ2/(sum*N*N)
!Variances
vare = dsqrt(sume2-sume*sume)/dsqrt(sum)
varm = dsqrt(summ2-summ*summ)/dsqrt(sum)
!Cv
cv = (N*(sume2-sume*sume))/temp**2
if (cv.gt.maxcv) then
maxcv=cv
Tmaxcv=temp
endif
!X
x = (N*(summ2-summ*summ))/temp
if (x.gt.maxx) then
maxx=x
Tmaxx=temp
endif
write(1,11) temp,sume,sume2,summ,summ2,sumam,vare,varm,cv,x
end do
!$OMP END DO
!$OMP END PARALLEL
finish = omp_get_wtime()
close(1)
print*, "Time: ",(finish-start),"Seconds"
end program Ising
! Functions
!Function that calculates the energy of the matrix s
real*8 function energ(S,L, pbc)
implicit none
integer s(1:L, 1:L), i, j, L
integer*4 pbc(0:L+1)
real*8 ene
ene = 0.0d0
do i = 1, L
do j = 1, L
ene = ene - s(i,j) * s(pbc(i+1),j) - s(i,j) * s(i,pbc(j+1))
end do
end do
energ = ene
return
end function energ
!Function that calculates the difference in energy that occurs when the spin of position (i, j) is changed
real*8 function DE(S,L,i,j,pbc)
implicit none
integer s(1:L, 1:L), i, j, L, difE
integer*4 pbc(0:L+1)
real*8 suma
difE = 0
suma = 0.0d0
suma = suma + s(pbc(i-1),j) + s(pbc(i+1),j) + s(i,pbc(j-1)) + s(i,pbc(j+1))
difE = difE + int(2 * s(i,j) * suma)
DE = difE
return
end function DE
!Function that calculates the magnetization of the matrix s
real*8 function magne(S,L)
implicit none
integer s(1:L, 1:L),L
magne = sum(s)
return
end function magne
! SUBRUTINES
!Subroutine that resets the matrix s with random values
subroutine reinicia(S,L)
implicit none
integer s(1:L, 1:L), i,j,L
real*8 genrand_real2
do i = 1, L
do j = 1, L
if (genrand_real2() < 0.5) then
s(i,j) = 1
else
s(i,j) = -1
endif
end do
end do
return
end subroutine
I have tried parallelizing the seeds loop instead of the temperatures, but it lasts almost the same, so i think i'm not parallelizing it correctly, because it looks a nice code to parallelize.
The other option I thought of is to manually parallelize the simulation. I could do this by compiling 16 programs, each of which handles a different range of temperatures. Then I could run all of the programs concurrently, so each program would get its own thread. However, this approach would require a lot of extra RAM.